R07

SET - 1

IV B.TECH - I SEMESTER EXAMINATIONS - MAY, 2011 FINITE ELEMENT METHODS

(COMMON TO MECHANICAL ENGINEERRING, AUTOMOBILE ENGINEERING) Time: 3hours Max. Marks: 80

Answer any FIVE questions All Questions Carry Equal Marks

- - -

- 1. a) With the help of a neat diagram, describe the various components of stress and strains.
 - b) Derive the stress, strain relationship and strain displacement relationship. [8+8]
- 2. For the three-stepped bar shown in Figure: 1 the bars fit snugly between the rigid walls at room temperature. The temperature is then raised by 40°C. Determine the displacement at 2 and 3 and stresses in the three sections.

 [16]

 Aluminum

- 3. a) Explain about Local and global Co-ordinate system with element connectivity.
 - b) The nodal coordinates and its functional value of a triangular linear element is given below. Calculate the value at (20, 6). [8+8]

Node	Co-ordinates	Value
Node 1	(12,1)	180
Node 2	(25,6)	160
Node 3	(12,12)	185

- 4. Explain the Finite element modeling of axisymmetric solids subjected to axisymmetric loading using triangular element and write the following: [16]
 - i) Relationship between strains and displacement.
 - ii) Element material matrix D.
 - iii) Jacobian Matrix.

5. For the two element plate shown in Figure: 2. Determine the B Matrices for the two elements. Determine the element stiffness, matrices if thickness t = 10mm, the material is aluminum with Young's Modulus E = 70 GPa, and Poisson's ratio, v = 0.33. Assume Plane stress Condition. [16]

6. Consider a cantilever beam with uniform distributed load as shown in Figure: 3. Estimate the deflection at the end of the beam. E = 100 GPa; $A = 500 \text{ mm}^2$, $A = 500 \text{ mm}^4$. [16]

- 7. Explain the following with examples.
 - a) Lumped parameter model.
 - b) Consistent mass matrix model.

[8+8]

- 8. Consider the axial vibrations of a steel bar shown in the Figure: 4.
 - a) Develop global stiffness and mass matrices,
 - b) Determine the natural frequencies and mode shapes? Assume $E = 3 \times 10^5 \text{ N/mm}^2$, Density = 7250 kg / mm³ [8+8]

Figure: 4

R07

SET - 2

IV B.TECH - I SEMESTER EXAMINATIONS - MAY, 2011 FINITE ELEMENT METHODS

(COMMON TO MECHANICAL ENGINEERRING, AUTOMOBILE ENGINEERING) Time: 3hours Max. Marks: 80

Answer any FIVE questions All Questions Carry Equal Marks

- - -

- 1. What are the basic steps involved in finite element analysis and explain them briefly with reference to static structural problems with example. [16]
- 2. Figure: 1 depicts an assembly of two bar elements made of different materials. Determine the nodal displacements, element stresses, and the reaction force.

E₁ = 220 GPa, E₂ = 150 GPa. [16]
$$A_1 = 200 \text{ mm}^2$$

$$A_1 = 200 \text{ mm}^2$$

$$1000 \text{ mm}$$
Figure: 1

3. a) Establish the Jacobian operator [J] of the two dimensional element shown in Figure: 2 also find the Jacobian Determinant.

- b) Describe the procedure of obtaining stiffness matrix by properly choosing shape functions for CST element. [8+8]
- 4. Explain the Finite element modeling of axisymmetric solids subjected to axisymmetric loading using triangular element and also write the following
 - i) Relationship between stresses and strains.
 - ii) Element material matrix D.
 - iii) Strain displacement matrix

[16]

5. Consider a cantilever beam with uniform distributed load as shown in Figure: 3. Estimate the deflection at the end of the beam. E = 200 GPa; $A = 625 \text{ mm}^2$, $A = 1500 \text{ mm}^4$. [16]

- 6. a) With reference to one dimensional heat transfer problems derive dT / dX and Thermal conductivity matrix.
 - b) Derive the elemental lumped and consistent mass matrices for 1-D bar element. [8+8]
- 7. One side of the brick wall of width 5 m, height 4 m and thickness 0.5 m is exposed to a temperature of 25° C while the other surface is maintained at 32°C. If the thermal conductivity is 0.75 W/m K and the heat transfer coefficient on the colder side is 50 W/m² K. Determine
 - a) The temperature distribution in the wall and
 - b) Heat loss from the wall. [16]
- 8. Discuss the methodology to solve the Eigen value problem for the estimation of natural Frequencies of a stepped bar. [16]

R07

SET - 3

IV B.TECH - I SEMESTER EXAMINATIONS - MAY, 2011 FINITE ELEMENT METHODS

(COMMON TO MECHANICAL ENGINEERRING, AUTOMOBILE ENGINEERING) Time: 3hours Max. Marks: 80

Answer any FIVE questions All Questions Carry Equal Marks

- - -

- 1. With a suitable example, explain the physical interpretation of finite element method for one dimensional analysis. [16]
- 2. Find the strain nodal displacement matrices B^e for the elements shown in figure: 1. Use local numbers given at the corners. [16]

Figure: 1

3. The nodal Co-ordinates of the triangular element are shown in Figure: 2. At the interior point P, the X coordinate is 3.3 and $N_1 = 0.3$. Determine N_2 , N_3 and the Y coordinate at point 'P'.

Figure: 2

4. Find the deflections and support reactions for the beam shown in Figure: 3. Take E = 200 GPa. [16]

- 5. Explain the Finite element modeling of axisymmetric solids subjected to axisymmetric loading using triangular element and also write the following
 - i) Relationship between stresses and strains.
 - ii) Element material matrix D.
 - iii) Strain displacement matrix.

[16]

- 6. Heat is generated in a large plate ($k = 0.8 \text{ W/m}^{\circ}\text{C}$) at the rate of 4000 W/m³. The plate is 25 cm thick. The outside surfaces of the plate are exposed to ambient air at 30 °C with a Convective heat transfer coefficient of 20 W/m²°C. Determine the temperature distribution in the wall. [16]
- 7. Explain in detail how the element stiffness matrix and load vector are evaluated in isoparametric formulations. [16]
- 8. Consider the axial vibrations of a steel bar shown in the Figure: 4.
 - a) Develop global stiffness and mass matrices,
 - b) Determine the natural frequencies and mode shapes? Assume $E = 2 \times 10^5 \text{ N/mm}^2$, Density = 7200 kg / mm³.

[8+8]

Figure: 4

R07

SET - 4

IV B.TECH - I SEMESTER EXAMINATIONS - MAY, 2011 FINITE ELEMENT METHODS

(COMMON TO MECHANICAL ENGINEERRING, AUTOMOBILE ENGINEERING) Time: 3hours Max. Marks: 80

Answer any FIVE questions All Questions Carry Equal Marks

- - -

1. a) If a displacement field is described by

$$u = 2x^2 + 2y^2 + 6xy$$

 $v = 3x + 6y - 2y^2.$

Determine ε_x , ε_y , γ_{xy} at the point x = -1, y = 0.

- b) A long rod is subjected to loading and a temperature increase of 600° C. The total strain at a point is measured to be 4×10^{-6} . If E = 300 Gpa and α = 12×10^{-6} per °C. Determine i) Stress at the point ii) Initial strain. [8+8]
- 2. Find the Displacement at the free end and the Element stresses for the following problem given in figure 1, Assume $E = 2 \times 10^5 \text{ N/mm}^2$. [16]

- 3. a) What is a constant strain triangular element? State its properties and applications.
 - b) The nodal coordinates of the triangular element are shown in Figure: 2. At the interior Point P, the X co-ordinate is 2.6 and N_1 =0.4. Find N2, N_3 and the Y coordinate at Point P. [8+8]

4. Derive the elemental stiffness matrix and load vector for two noded beam element?

[16]

- 5. Explain the Finite element modeling of axisymmetric solids subjected to axisymmetric using triangular element and write the following
 - i) Relationship between strains and displacement.
 - ii) Element material matrix D.
 - iii) Jacobian Matrix.

[16]

- 6. Write the following:
 - a) 2D four noded iso-parametric master element.
 - b) Finite element modeling of conduction-convection systems.

[8+8]

- 7. Derive the element conductivity matrix and load vector for solving 1-D heat conduction Problems, if one of the surfaces is exposed to a heat transfer coefficient of h and ambient Temperature of T_{∞} ? [16]
- 8. Evaluate the eigen values, eigen vectors and natural frequencies of a beam of cross section 360 cm² of length 600 mm. Assume young's modulus as 200 GPa, density 7850 kg/m³ and Moment of Inertia of 3000 mm⁴. Make into two elements of 300 mm length each.

