Set No. 2

IV B.Tech II Semester Examinations, APRIL 2011 IMAGE PROCESSING

Computer Science And Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. Explain in detail with block diagram the fundamental steps in digital Image processing and their importance. [16]
- 2. Explain in detail the following piece wise linear Transformations functions.
 - (a) Contrast stretching
 - (b) Gray level slicing
 - (c) Bit plane slicing. [16]
- 3. Explain in detail about the following color models:
 - (a) RGB

Code No: 07A80504

- (b) HSI
- (c) CMY. [16]
- 4. (a) Define and Explain about Hough transform.
 - (b) Explain Global Processing via the Hough Transform. [8+8]
- 5. (a) Define and Explain about discriminant analysis.
- (b) Explain briefly pattern class. [8+8]
- 6. Explain in detail the constrained least squares filtering with related expressions.

 [16]
- 7. (a) Explain about Delta Modulation.
 - (b) Define lossy predictive coding and explain with suitable examples. [8+8]
- 8. (a) How would you convert an image from a square grid to a hexagonal grid?
 - (b) Explain and Draw the diagram $for(A \cap B) \cup (A \cup B)^C$. [16]

Set No. 4

IV B.Tech II Semester Examinations, APRIL 2011 IMAGE PROCESSING

Computer Science And Engineering

Time: 3 hours

Code No: 07A80504

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. Give the expression for pdf of the following and plot them
 - (a) Rayleigh noise
 - (b) Gaussian noise
 - (c) Erlang noise
 - (d) Exponential noise
 - (e) Uniform noise
 - (f) Impulse noise.

[16]

- 2. Derive the expressions for conversion of HSI to RGB and HIS models.
- 3. (a) Prove that for continuous signal Histogram equalization results in flat histogram.
 - (b) Explain how Histogram statistics helps in Image Enhancement. [16]
- 4. (a) Explain about coding redundancy.
 - (b) What is relative data redundancy? Compare with data redundancy. [16]
- 5. (a) Explain about Neural networks for image processing.
 - (b) What is generalized delta rule for learning by back propagation? [8+8]
- 6. (a) Explain about point detection.
 - (b) What are the different types of detection of discontinuities? [8+8]
- 7. Consider the two subsets S1 and S2 shown in the following figure. For V= 1.

 Determine whether the two subsets are [16]
 - a) 4-adjcent b) 8- adjacent or c) m-adjacent.

Define also the above terms.

)	0	0	0	0	0	0	1	1 0 0 0
-	0	0	1	0	0	1	0	0
	0	0	1	0	1	1	0	0
,	()	1	1	1	0	0	0	()

8. (a) Define Dilation and erosion with suitable diagrams.

Set No. 4

(b) Prove that $(A\Theta B)^C = A^C \oplus \hat{B}$

Code No: 07A80504

[8+8]

Set No. 1

Max Marks: 80

IV B.Tech II Semester Examinations, APRIL 2011 $_{\mbox{\footnotesize IMAGE PROCESSING}}$

Computer Science And Engineering

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Explain in detail the spatial domain Restoration using following mean filters.

i. Arithmetic

Code No: 07A80504

- ii. Harmonic
- iii. Contraharmonic.
- (b) If the transform function for degradation is $H(u,v) = -2\sqrt{2\pi}\sigma(u^2+v^2)e^{-2\pi^2\sigma^2(u^2+v^2)}$ then give the expression for wiener filter. Assuming that the ratio of power spectra of noise and undegraded signal is constant. [16]
- 2. (a) Explain the following Arithmetic operations and their application for Image Enhancement:
 - i. Image Subtraction
 - ii. Image Averaging,
 - (b) Explain how Region of Interest processing can be done using logic operations. [10+6]
- 3. (a) Define Parameter space.
 - (b) Define accumulator cells.
 - (c) Define expansion of the node.
 - (d) Define star (or) root node.

[16]

- 4. (a) Explain about histogram processing for color Images.
 - (b) Consider any two valid colors $C_1 \& C_2$ with coordinates $(x_1 \ y_1) \& (x_2 \ y_2)$ in the chromaticity diagram. Derive the necessary general expressions for computing the relative percentages of colors $C_1 \& C_2$ composing a given color that is known to lie on the straight line joining these two colors. [16]
- 5. (a) Explain about Fidelity criteria.
 - (b) What is the difference between channel encoder and channel decoder? [8+8]
- 6. (a) Give the conditions (s) under which the D4 distance between two points p & q is equal to the shortest 4- path between these points. Is this path unique. Explain.
 - (b) Explain in detail how digital Image is represented. [16]
- 7. (a) Explain about Morphological Algorithms.

Set No. 1

(b) What is Region-filling and explain with suitable diagrams? [8+8]

8. (a) Define and Explain about hyperspheres.

Code No: 07A80504

(b) Write an algorithm to Bayes classifier for Gaussian pattern classes. [8+8]

Set No. 3

IV B.Tech II Semester Examinations, APRIL 2011 IMAGE PROCESSING

Computer Science And Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Define and Explain about Dynamic (or) adaptive.
 - (b) Define and Explain about back ground point.

[8+8]

- 2. (a) Explain about string matching.
 - (b) Explain briefly about structural methods.

8+8

- 3. Explain what is pseudo color Image processing and explain the following pseudo color Image processing techniques.
 - (a) Intensity slicing

Code No: 07A80504

(b) Gray level to color Transformation.

[16]

- 4. (a) Give the conditions (s) under which the D4 distance between two points p & q is equal to the shortest 4- path between these points. Is this path unique. Explain.
 - (b) Explain in detail how digital Image is represented.

[16]

- 5. Explain the following filters used in Image restoration.
 - (a) Inverse filter
 - (b) Wiener filter.

[16]

- 6. (a) How we can use morphology in coding redundancy?
 - (b) What are different types of interpixel redundancies?

[8+8]

- 7. (a) Explain about extensions to Gray-scale images.
 - (b) Define pruning and explain about it.

[8+8]

- 8. (a) In a given application an averaging mask is applied to input images to reduce noise and then a daplacian mask is applied to enhance small details. Would the result be same if the order of operations were reversed. Explain.
 - (b) Show that isotropic property is lost in general if the gradient is completed using $\nabla f \approx |G_x| + |G_y|$. [16]