R09

II B.Tech I Semester Examinations, MAY 2011 MATHEMATICS-II Common to CE, CHEM, AE, BT, MMT

Time: 3 hours

Code No: A109210101

Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) i. Show that the product of the eigen values of a matrix A is equal to its determinant.
 - ii. Show that the sum of the eigen values of a matrix is the trace of the matrix. $\begin{bmatrix} -1 & 1 & 0 \end{bmatrix}$

(b) Find the eigen values and eigen vectors of
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
. [15]

2. (a) Find the skew-Hermitian form for
$$A = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$$
 with $X = \begin{bmatrix} 1 \\ i \end{bmatrix}$.

(b) Find the Hermitian form of $A = \begin{bmatrix} 3 & 2 \\ 2+i & 4 \end{bmatrix}$ with $X = \begin{bmatrix} 1+i \\ 2i \end{bmatrix}$. [15]

3. (a) Find the Fourier Transform of
$$\begin{cases} \cos x & 0 < x < a \\ 0 & x \ge a \end{cases}$$

- (b) Find f(x) if $F_C[f(x)] = 16 \frac{(-1)^{n-1}}{n^3}$ if 0 < x < 8 [15]
- 4. (a) Form the partial differential equation from F(x y z, $x^2 z^2$) = 0
 - (b) Solve the partial differential equation $\left(\frac{p}{2}+x\right)^2 + \left(\frac{q}{2}+y\right)^2 = 1$ [15]
- 5. Reduce the quadratic form $5x^2 + 26y^2 + 10z^2 + 4yz + 6xy + 14xz$ to canonical form by orthogonalization. [15]

6. (a) Find non-singular matrices P and Q so that PAQ is in the normal form,

where A =
$$\begin{bmatrix} 3 & 2 & -1 & 5 \\ 5 & 1 & 4 & -2 \\ 1 & -4 & 11 & -19 \end{bmatrix}$$
.

(b) Find the rank of the matrix A by reducing it to the normal form,

where
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & -4 \\ 2 & 3 & 5 & -5 \\ 3 & -4 & -5 & 8 \end{bmatrix}$$
. [15]

7. Solve the boundary value problem $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, with u(0, y) = 0 u(x,b) = 0 and u(x, 0) = 0u(a, y) = Ky (b - y), 0 < y < b[15]

Code No: A109210101

 $\mathbf{R09}$

Set No. 2

- 8. (a) Obtain the Fourier series for the function $f(x) = x \sin x$ in $[0, 2\pi]$
 - (b) Find the half range cosine series for f(x) = 1 in [0, 1]= x in [1, 2]. [15]

 $\mathbf{R09}$

II B.Tech I Semester Examinations, MAY 2011 MATHEMATICS-II Common to CE, CHEM, AE, BT, MMT

Time: 3 hours

Code No: A109210101

Max Marks: 75

[15]

 $\left[15\right]$

Answer any FIVE Questions All Questions carry equal marks *****

1. Determine diagonal matrix orthogonally similar to the real symmetric matrix

 $\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 2 & 2 \\ 0 & 2 & 3 \end{bmatrix}$

- 2. (a) Form the partial differential equation from $z = y f(x^2 + y^2)$
 - (b) Solve the partial differential equation $z^2(p^2x^2+q^2)=1$
- 3. (a) Find the rank of the matrix by reducing it to Echelon form from the matrix $\begin{bmatrix} 1 & 2 & -4 & 5 \\ 2 & -1 & 3 & 6 \\ 8 & 1 & 9 & 7 \end{bmatrix}$.

(b) Reduce the matrix $\begin{bmatrix} 5 & 3 & 14 & 4 \\ 0 & 1 & 2 & 1 \\ 1 & -1 & 2 & 0 \end{bmatrix}$ into Echelon form and hence find its rank. [15]

- 4. A string is stretched and fastened to two points L apart. Motion is started by displacing the string in the form y = K x(L x) from which it is released at time t = 0. Find the displacement of the string at any point x at any time t. [15]
- 5. (a) Obtain the Fourier series for the function $f(x) = \pi + x \text{ in } -\pi < x < 0$ $= \pi - x \text{ in } 0 < x < \pi$
 - (b) Find the half range Sine series for

$$\begin{aligned} f(x) &= \frac{1}{4} - x \text{ if } 0 < x < \frac{1}{2} \\ &= x - \frac{3}{4} \text{ if } \frac{1}{2} < x < 1 \end{aligned}$$

$$[15]$$

- 6. Diagonalize the matrix $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ and hence find A^4 . [15]
- 7. Reduce the quadratic form $3x_1^2 2x_2^2 x_3^2 4x_1x_2 + 12x_2x_3 + 8x_1x_3$ by orthogonal transforms and hence find rank, index and signature. [15]

Code No: A109210101

R09

Set No. 4

8. (a) Find the Fourier cosine Transform of $F(\mathbf{x}) = \mathbf{x} \cdot 0 < x < \frac{1}{2}$ $= 1 - \mathbf{x} , \frac{1}{2} < x < 1$ = 0, x > 1

(b) Find f(x) if its finite Fourier Sine transform is $\frac{(1-Cosn\pi)}{n^2\pi^2}$ [15]

FIRST

 $\mathbf{R09}$

[15]

II B.Tech I Semester Examinations, MAY 2011 MATHEMATICS-II Common to CE, CHEM, AE, BT, MMT

Time: 3 hours

Code No: A109210101

Max Marks: 75 Answer any FIVE Questions

All Questions carry equal marks ****

1. Diagonalize the matrix
$$A = \begin{bmatrix} 2 & 2 & -2 \\ 2 & 1 & 2 \\ 0 & 1 & -3 \end{bmatrix}$$
 and hence find A^4 . [15]
2. (a) Using Fourier integral show that $\int_{0}^{\infty} \frac{1-\cos \pi \lambda}{\lambda} \sin x \lambda dy = \frac{\pi}{2}, 0 < x < \pi$
 $= 0$ if $x \ge \pi$

- (b) Find the finite Fourier sine and cosine transforms of $f(x) = 1 \text{ in } 0 < x < \frac{\pi}{2}$ $= -1 \text{ in } \frac{\pi}{2} < x < \pi$ [15]
- 3. (a) Solve: x+y+z =6; x-y+2z =5; 2x-2y+3z = 7.
 (b) Test for consistency and solve 2x+3y+7z =5; 3x+y-3z=12; 2x+19y-47z =32.

4. (a) Prove that eigen values of a real symmetric matrix are always real.

(b) Express the matrix A as the sum of a symmetric and a skew symmetric matrices, where $A = \begin{bmatrix} 4 & 2 & -3 \\ 1 & 3 & -6 \\ -5 & 0 & -7 \end{bmatrix}$. [15]

5. Solve the partial differential equation $\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}$ with the conditions

(a) $u \to 0, ast \to \infty$

(b)
$$\frac{\partial u}{\partial x} = 0$$
 when $x = \pm a, t > 0$

- (c) u = x, when t = 0 and -a < x < a
- 6. (a) Obtain the Fourier series for the function $f(x) = \cos x$ in $(-\pi, \pi)$
 - (b) Find the half range cosine series for $f(x) = x \operatorname{Sin} x$ in $[0, \pi]$ [15]
- 7. Reduce the quadratic form $4x^2 + 3y^2 + z^2 8xy 6yz + 4xz$ to canonical form by orthogonal transformation and hence find the nature of the quadratic form. [15]
- 8. (a) Form the partial differential equation from $z = e^{ny} f(x y) [n \text{ is a constant}]$
 - (b) Solve the partial differential equation $(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$ [15]

 $\mathbf{R09}$

II B.Tech I Semester Examinations, MAY 2011 MATHEMATICS-II Common to CE, CHEM, AE, BT, MMT

Time: 3 hours

Code No: A109210101

Max Marks: 75

[15]

Answer any FIVE Questions All Questions carry equal marks ****

- (a) Find the Fourier Transform of $F(x) = e^{ikx}$ a < x < b1. =0, x < a, x > b(b) Find the finite Fourier sine transforms of f(x) = I if $0 < x < \frac{\pi}{2}$ = -1 if $\frac{\pi}{2} < x < -1$
- (a) Obtain the Fourier series for the function 2. $F(x) = x \sin x \text{ in } [-\pi, \pi]$ (b) Find the half range Sine series for $f(x) = \pi x + x^2$ in $(0, \pi)$
 - [15]
- (a) i. Prove that the transpose of unitary matrix is unitary. 3. ii. Prove that the inverse of unitary matrix is unitary. [-3, -2+5i]

(b) Show that the matrix
$$\begin{bmatrix} 3 & 4i & 2+5i \\ 7+4i & -2 & 3+i \\ -2-5i & 3-i & 4 \end{bmatrix}$$
 is a Hermitian matrix. [15]

- $\begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ and hence find A⁸. 4. Diagonalize A [15]
- 5. Reduce the quadratic form $x^2 + y^2 + 2z^2 2xy + 4xz + 4yz$ to the canonical form. 15
- 6. Solve the boundary value problem $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ with $\frac{\partial u}{\partial x}(0, y) = \frac{\partial u}{\partial x}(\pi, y) = u(x, \pi) = 0$ and $u(x, 0) = x^2, 0 < x < \pi$ [15]
- 7. (a) Show that the system of equations $2x_1 2x_2 + x_3 = \lambda x_1$; $2x_1 3x_2 + 2x_3 = \lambda x_1$ $-\lambda x_2$; $-x_1 + 2x_2 = \lambda x_3$ can possess a non-trivial solutions only if $\lambda = 1, \lambda =$ -3. Obtain the general solution in each case.
 - (b) Solve completely the system of equations: 2x-2y+5z+3w=0; 4x-y+z+w=0;3x-2y+3z+4w = 0; x-3y+7z+6w = 0. 15
- 8. (a) Form the partial differential equation from $f(xyz, x^2 + y^2 + z^2) = 0$
 - (b) Solve the partial differential equation $z(p^2 - q^2) = x - y$ [15]

* * * * *