II B.Tech I Semester Examinations,MAY 2011
MATHEMATICS-III
Common to ICE, E.COMP.E, ETM, EIE, ECE, EEE
Time: 3 hours
Max Marks: 75

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Express $x^{3}+3 x^{2}+4 x+3$ interms of Legendre polynomial.
(b) Evaluate $\int_{0}^{1} x\left(1-x^{2}\right)^{-\frac{1}{2}} U_{4}(x) d x$.
2. Find the Taylor's and Laurent's series which represents the function $\frac{\left(z^{2}-1\right)}{(z+3)(z+2)}$ when
(a) $|z| \leq 2$
(b) $2<|z|<3$
(c) $|z| \geq 3$
3. (a) Find the analytic function $\mathrm{f}(\mathrm{z})=\mathrm{u}(\mathrm{r}, \theta)+\mathrm{i} \mathrm{v}(\mathrm{r}, \theta)$ such that $u(r, \theta)=$ $r^{2} \cos 2 \theta-r \cos \theta+2$.
(b) S.T. The function $u=1 \nleftarrow 2 \log \left(x^{2}+y^{2}\right)$ is harmonic \& find its conjugate. [15]
4. (a) Evaluate $\int_{0}^{\infty} \frac{\log x}{1+x^{2}} d x$
(b) Find the Residues off $(z)=\frac{1}{z\left(e^{z}-1\right)}$
5. (a) Evaluate $\int\left(z^{2}+3 z+2\right) d z$ where C is the arc of the cycloid $\mathrm{x}=\mathrm{a}(\theta+\sin \theta)$, y $=a(1-\cos \theta)$ between the points $(0,0) \&(a \pi, 2 a)$
(b) Evaluate $\int_{c}\left(z^{2}+3 z\right) d z$ along the straight line from $(2,0)$ to $(2,2)$ and then from $(2,2)$ to $(0,2)$
6. (a) Draw the undirected graph represented by the adjacency matrix A given below. $A=\left[\begin{array}{llll}1 & 2 & 0 & 0 \\ 3 & 0 & 1 & 1 \\ 0 & 1 & 2 & 2 \\ 0 & 1 & 2 & 0\end{array}\right]$
(b) Convert the following tree into binary tree (figure 1).
7. Using Jacobi Series, P.T. $J_{0}^{2}+2\left\{J_{1}^{2}+J_{2}^{2}+--\right\}=1$
8. (a) Find the points at which $\mathrm{w}=\cosh \mathrm{z}$ is not conformal.
(b) Find the image of the strip bounded by $x=0$ and $x=\frac{\pi}{4}$ under the transformation $\mathrm{w}=\cos z$

Figure - 1

II B.Tech I Semester Examinations,MAY 2011

MATHEMATICS-III
Common to ICE, E.COMP.E, ETM, EIE, ECE, EEE
Time: 3 hours
Max Marks:

Answer any FINE Questions

All Questions carry equal marks

1. Find the bilinear transformation which maps $z_{1}=1, z_{2}=i, z_{3}=-1$ in to the points $w_{1}=i, w_{2}=0, w_{3}=-i$ respectively. Find the fixed and critical points of this transformation and find the image of $|z|<1$
2. (a) Show that when $|z+1|<1, z^{-2}=1+\sum_{n=1}^{\infty}(n+1) z^{n}$
(b) Find the Laurent series expansion of $\mathrm{f}(\mathrm{z})=\frac{z^{2}-6 z-1}{(z-1)(z-3)(z+2)}$ in the region $3<|z+2|<5$.
3. (a) S.T. $J_{3}(x)$ is an even function when ' n ' is even \& odd function when 'on' is odd.
(b) Evaluate $\int_{0}^{\alpha} x^{-3 / 2}\left(1-e^{-x}\right) \mathrm{dxor} \int_{0}^{\alpha} t^{-3 / 2}\left(1-e^{-t}\right) d t$
4. (a) Evaluate contour integral of the real integral $\int_{0}^{2 \pi} \frac{\operatorname{Cos} 3 \theta d \theta}{5-4 \cos \theta}$
(b) The only singularities of a single valued function $f(z)$ are poles of order 1 and 2 at $\mathrm{z}=-1$ and $\mathrm{z}=2$ with residues at these poles i and 2 respectively. If $\mathrm{f}(0)$ $=\frac{7}{4}, f(1)=\frac{5}{4}$, determine the function $f(\mathrm{z})$.
5. (a) Verify whether the graph G given below Figure 2 contain an Eulerian circuit.

Figure 2:
(b) Using D F S (Depth first search) to produce a spanning tree for the simple graph Figure 3.

Figure 3:
6. (a) S.T. the real \& imaginary parts of the function $w=\log z$ satisfy the $C-R$ equations when z is not zero.
(b) S.T. $\mathrm{f}(\mathrm{z})=\mathrm{z}+2 \bar{z}$ is not analytic anywhere in the complex plane.
7. Let ' C ' denotes the boundary of the square whose sides lie along the lanes $\mathrm{x}= \pm 2$, $\mathrm{y}= \pm 2$ where ' C ' is described in the positive sense evaluate the following integrals
(a) $\int_{C} \frac{\tan (z / 2)}{\left(z-x_{0}\right)^{2}} d x\left(\left|x_{0}\right|<2\right)$
(b) $\int_{C} \frac{\cosh z}{z^{4}} d z$
8. P.T. $\frac{1}{\sqrt{1-2 x t+t^{2}}}=\mathrm{P}_{0}(\mathrm{x})+\mathrm{P}_{1}(\mathrm{x}) \mathrm{t}+\mathrm{P}_{2}(\mathrm{x}) \mathrm{t}^{2}+-----$

II B.Tech I Semester Examinations,MAY 2011
 MATHEMATICS-III

Common to ICE, E.COMP.E, ETM, EIE, ECE, EEE
Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find the image of the triangle with vertices at $\mathrm{i}, 1+\mathrm{i}, 1-\mathrm{i}$ in the z -plane, under the transformation $e^{\frac{5 \Pi i}{3}} \cdot(z-2+4 i)$
(b) Find the image of the infinite strip, $0<y<\frac{1}{2}$ under the mapping function w $=\frac{1}{z}$.
2. (a) Find the residue of $\frac{\cos (z-i)}{(z+2 i)^{3}}$.
(b) Evaluate $\int \frac{\operatorname{sinzdz}}{z \cos z}$ where c is $|z|=\pi$.
3. (a) Evaluate $\int_{c}\left(y^{2}+2 x y\right) d x+\left(x^{2}-2 x y\right)$ dy where ' C ' is the boundary of the region by $y=x^{2} \& x=y^{2}$
(b) Evaluate $\int_{0}^{1+i} z^{2} d z$ along $y=x^{2}$
4. (a) S.T. an analytic funetion of constant absolute value is constant.
(b) S.T. both the reat \&imaginary parts of an analytic function are harmonic.
5. (a) P.T $\frac{d}{d x}\left\{x^{n} J_{n}(x)\right\}=x^{n} J_{n-1}(x)$
(b) S.T. $4 J_{n}^{11}(x)=\mathrm{J}_{n-2}(\mathrm{x})-2 \mathrm{~J}_{n}(\mathrm{x})+\mathrm{J}_{n+2}(\mathrm{x})$
6. (a) S.T. $\int_{0}^{1} x^{2} P_{n+1}(x) P_{n-1}(x) d x=\frac{2 n(n+1)}{\left(4 n^{2}-1\right)(2 n+3)}$
(b) S.T. $2 \mathrm{P}_{3}(\mathrm{x})+3 \mathrm{P}_{1}(\mathrm{x})=5 \mathrm{x}^{3}$
7. Find the minimal spanning tree for the following Graph (Figure 4).
8. Expand $\mathrm{f}(\mathrm{z})=\frac{z+3}{z\left(z^{2}-z-2\right)}$ in powers of z .
(a) With in the unit circle about the origin
(b) With in the annular region between the concentric circles about the origin having radii 1 and 2 respectively.
(c) The exterior to the circle of radius 2 .

II B.Tech I Semester Examinations,MAY 2011 MATHEMATICS-III
 Common to ICE, E.COMP.E, ETM, EIE, ECE, EEE

Time: 3 hours
Max Marks: 75

Answer any FIVE Questions
 All Questions carry equal marks

1. Expand the function $\mathrm{f}(\mathrm{z}) \Rightarrow \frac{4 z+4}{z(z-3)(z+2)}$ in powers of z , when
(a) $|z| \leq 1$
(b) $1 \leq|z| \leq 2$
(c) $|z|>2$
2. (a) Show that the transformation $w=\frac{3-z}{z-2}$ transforms the circle $\left.{ }^{\mid} z-\frac{5}{2} \right\rvert\,=\frac{1}{2}$ in the z-plane in to the imaginary axis in the w-plane.
(b) For the mapping $\mathrm{w}=1 / \mathrm{z}$, find the image of the family of circles $x^{2}+y^{2}=$ $a x$, where a is real.
[8+7]
3. (a) Determine the value of $\mathrm{J}_{1 / 2}(\mathrm{x})$
(b) P.T. $\int_{0}^{\pi / 2} \sin ^{7} \theta \cos ^{7} \theta d \theta=\frac{1}{280}$
4. (a) Find ' k ' such that $\mathrm{f}(\mathrm{x}, \mathrm{y})=x^{3}+3 k x y^{2}$ may be harmonic \& find its conjugate.
(b) Find the conjugate harmonic of $u=e^{x^{2}-y^{2}} \cos 2 x y$. Hence find $f(z)$ in terms of ' z '.
[15]
5. (a) Find whether the following (figure 5) is a binary tree.
(b) Suppose all vertices in a graph have odd degree 'K' Show that total number of edges in G is multiple of K.
6. If $\mathrm{P}_{6}(2)=\mathrm{a} \& \mathrm{P}_{7}(2)=\mathrm{b}$, then P.T.
(a) $P_{6}^{1}(2)=\frac{7}{3}(b-2 a)$
(b) $\quad P_{8}(2)=\frac{1}{8}(30 b-7 a)$

Figure 5:
7. (a) Using complex variable techniques evaluate $\int_{0}^{2 \pi} \frac{\sin ^{2} \theta d \theta}{5-4 \cos \theta}$.
(b) The only singularities of a single valued function $\mathrm{f}(\mathrm{z})$ are poles of order 2 and 1 at $\mathrm{z}=1 \& \mathrm{z}=2$ with residues of these poles as 1 and 3 respectively. If $\mathrm{f}(0)$ $=\frac{3}{2}, \mathrm{f}(-1)=1$, determine the function.
8. (a) From the integral $\int \frac{d z}{z+4}$ S.T $\int_{0}^{\pi} \frac{1+4 \cos \theta}{17+8 \cos \theta}=0$ where $\mathrm{C}:|z|=1$
(b) If C is a closed curve described in + ve sense and $\mathrm{f}\left(\mathrm{z}_{0}\right)=\int_{c} \frac{z^{4}+z}{\left(z-z_{0}\right)^{4}} d z$ show that $\mathrm{f}\left(\mathrm{z}_{0}\right)=8 \pi i z_{0}$ is where z_{0} is a point inside ' C ' and $\mathrm{f}\left(\mathrm{z}_{0}\right)=0$ if z_{0} lies outside 'C'.

