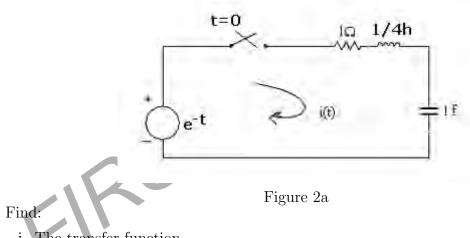
R09

II B.Tech I Semester Examinations, MAY 2011 SIGNALS AND SYSTEMS Common to BME, ICE, ETM, EIE, ECE

Time: 3 hours


Code No: A109210402

Max Marks: 75

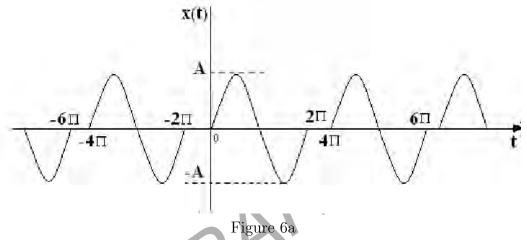
[8+7]

Answer any FIVE Questions All Questions carry equal marks $\star \star \star \star \star$

- 1. (a) With the help of graphical example explain sampling theorem for Band limited signals.
 - (b) Explain briefly Band pass sampling.
- 2. (a) The network shown in figure 2a is excited by a voltage source e^{-t} . The switch is closed at t=0.

i. The transfer function

- ii. The current i(t)
- (b) Is there any test which can distinguish the physically realizable characteristic from an unrealizable one? Discuss the test with necessary expressions and figures. [8+7]
- 3. (a) Explain how Fourier Transform is developed from Fourier series.
 - (b) Power Signals will have Fourier Transforms and energy signals will here Fourier series in the frequency domain. Justify this statement. [10+5]
- 4. (a) Find the component of a waveform $\sin \omega_2 t$ contained in another waveform $\sin \omega_1 t$ over the interval (-T, T) for all real values of ω_1 and ω_2 ($\omega_1 \neq \omega_2$). How does this component change with T.
 - (b) Determine whether the following functions are periodic or non periodic
 - i. a Cos 2t + b Sin 7t + c sin 13t
 - ii. $(a \operatorname{Sin} t)^3$
 - iii. $(a Sin 2t + b Sin 5t)^2$. Where a, b and c are constants.


[10+5]

Code No: A109210402

R09

Set No. 2

- 5. (a) A signal y(t) given by $y(t) = C_0 + \sum_{n=1}^{\infty} C_n Cos(n\omega_0 t + \theta_n)$. Find the autocorrelation and PSD of y(t).
 - (b) Explain the Graphical representation of convolution with an example. [8+7]
- 6. (a) A periodic waveform is formed by eliminating the alternate cycle of a Sinusoidal waveform as shown in figure 6a.

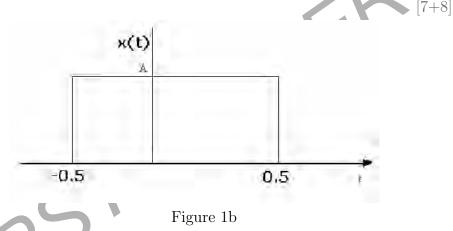
- i. Find the Fourier series (exponential) by direct evaluation of the coefficients.
- ii. If the waveform is shifted to the left by π seconds, the new waveform $f(t+\pi)$ is odd function of the time whose Fourier series contains only sine terms. Find the Fourier series of $f(t+\pi)$. From this series, write down the Fourier series for f(t). [8+7]
- 7. Determine the constraint on r = |z| for each of the following sums to converge:
 - (a) $\sum_{n=-1}^{\infty} \left(\frac{1}{2}\right)^{n+1} z^{-n}$ (b) $\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^{-n+1} z^{n}$ (c) $\sum_{n=0}^{\infty} \left(\frac{1+(-1)^{n}}{2}\right) z^{-n}$ (d) $\sum_{n=-\infty}^{\infty} \left(\frac{1}{2}\right)^{|n|} \cos\left(\frac{\pi}{4}n\right) z^{-n}$ [3+4+4+4]
- 8. (a) Consider an LTI system with input $x(t) = e^{-t}u(t)$ and impulse response $h(t) = e^{-2t}u(t)$. Determine the Laplace transforms of x(t) and h(t). Using convolution property, determine the Laplace transform of the response, Y(s).
 - (b) Determine the Laplace transform and the associated ROC and pole-zero plot for the following functions

i.
$$x(t) = t e^{-2|t|}$$

ii. $x(t) = e^{-4t}u(t) + e^{-5t}(Sin5t)u(t)$ [6+9]

R09

II B.Tech I Semester Examinations, MAY 2011 SIGNALS AND SYSTEMS Common to BME, ICE, ETM, EIE, ECE

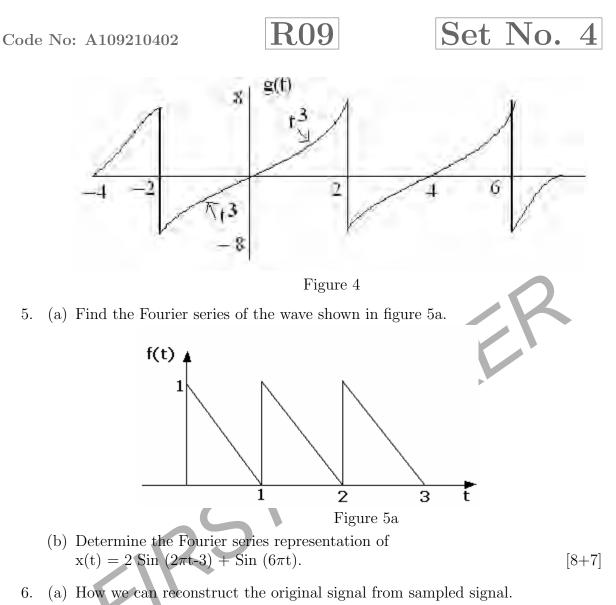

Time: 3 hours

Code No: A109210402

Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks $\star \star \star \star \star$

- 1. (a) What is orthonormal vector and orthonormal set of vectors.
 - (b) Consider the rectangular pulse x(t) as shown in figure 1b.Approximate the above function by A sin $2\pi t$, show that the mean square error is minimum.


- 2. (a) For the following signal, find the power, rms value and sketch the PSD. A Cos 40t + B Sin 60t.
 - (b) If the waveform V(t) has the Fourier Transform V(f), then show that the waveform delayed by time t_d i.e V(t- t_d) has the transform of $V(f).e^{-jwt_{\alpha}}$ [7+8]
- 3. (a) Define causality and stability with reference to a Linear system and its impulse response.
 - (b) Consider an LTI system with the input and output related through the relation. (t) $\int_{0}^{\infty} e^{-(t-\tau)} (t-\tau) dt$

$$y(t) = \int_{-\alpha} e^{-(t-\tau)} x(\tau-2) d\tau$$

What is the impulse response h(t) for this system. [8+7]

4. Find the power of periodic signal g(t) shown in figure 4. Find also the powers of

(a)
$$-g(t)$$

- (b) 2g(t)
- (c) g(-t)
- (d) g(t)/2. [15]

- (b) What is an apecture effect? Explain why flat top samples get the aperture effect. [7+8]
- 7. (a) Find the Z-transform of an $\sin(\eta\omega_0).u(n)$
 - (b) Find the inverse Z-transform of $X(Z) = (2+Z^3+3Z^4)/(Z^2+4Z+3), |Z| > 0.$
 - (c) Find the Z-transform of the following signal x(n) = 1 for $0 \le n < N 1$ = 0 elsewhere. [6+5+4]
- 8. (a) Consider the signal $x(t) = e^{-5t}u(t) + e^{-3t}u(t)$ and denote its Laplace transform by X(s). What are the constraints placed on the real and imaginary parts of ? if the ROC of X(s) is Re{s} > -3?
 - (b) The system function of a causal LTI system is $H(s) = \frac{(s+1)}{(s^2+2s+2)}$. Determine and sketch the response y(t) when the input is $x(t) = e^{-|t|}, -\infty < t < \infty$. (7+8)

```
*****
```

 $\mathbf{R09}$

II B.Tech I Semester Examinations, MAY 2011 SIGNALS AND SYSTEMS Common to BME, ICE, ETM, EIE, ECE

Time: 3 hours

Code No: A109210402

Max Marks: 75

4+4+3+4

Answer any FIVE Questions All Questions carry equal marks $\star \star \star \star \star$

- 1. (a) When a function f(t) is said to be laplace transformable.
 - (b) What do you mean by region of convergence?
 - (c) List the advantages of Laplace transform.
 - (d) If $\delta(t)$ is a unit impulse function find the laplace transform of $d^2/dt^2 [\delta(t)]$.
- 2. (a) Prove that the normalized power is given by $P = \sum_{n=-\alpha}^{\infty} |C_n|^2$ where $|C_n|$ are complex Fourier coefficients for the periodic waveform.
 - (b) Determine the exponential form of Fourier series for the waveform in below figure 2b. [8+7]

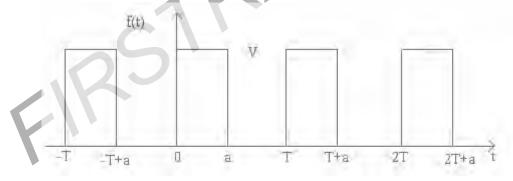
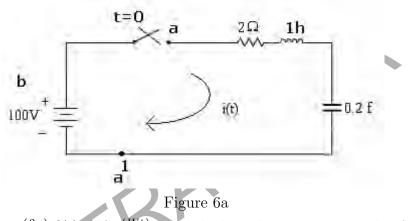


Figure 2b

- 3. (a) Explain how Fourier Transform is developed from Fourier series.
 - (b) Find the Fourier Transform of Cos $\omega_0 t$ and draw the spectral density function.

[8+7]


- 4. (a) Find the Z transform of $t^2 e^{-at}$.
 - (b) Find the final value and initial value of x(n) for $X(z) = \frac{z^2}{(z-1)(z-0.2)}$. [7+8]
- 5. (a) Let two signals be defined by $x_1(t) = \begin{cases} 1 & Cos(2\pi t) \ge 1 \\ 0 & Cos(2\pi t) < 1 \end{cases}$ $x_2(t) = Sin(2\pi t/10)$ Graph these products over the time range -5 < t <5 i. x_1((t-2)/5) x_2(20t)
 - ii. $x_1(2t) x_2(-t)$

Code No: A109210402

Set No. 1

- iii. $x_1(t/5) x_2(20t)$ iv. $x_1(t/5) x_2(20(t+1))$.
- (b) Find the signal energy of each of these signals:
 - i. $x(t) = 2 \operatorname{Sin} (200\pi t)$ ii. $x(t) = 3 \operatorname{rect} (t/4)$. [8+7]
- 6. (a) Find the current i(t) in a series RLC circuit as shown in figure 6a when a voltage of 100 volts is switched on across the terminals a a^1 at t=0.

 $\mathbf{R09}$

- (b) A signal $f(t) = \left(\frac{2\pi}{w}\right)\delta(t) S_a\left(\frac{Wt}{2}\right)$ is applied at the input terminals of the ideal low pass filter. The transfer function of such filter is given by $H(j\omega) = K \text{ GW }(\omega) e^{-jwt_0}$ Find the response. [8+7]
- 7. (a) State and Prove Properties of cross correlation function.

(b) If
$$v(f) = \operatorname{AT} \frac{\sin 2\pi f T}{2\pi f T}$$
 find the energy contained in V(t). [7+8]

8. (a) A low pass signal x(t) has a spectrum x(f) given by $x(f) = 1 - |f|/200 \quad |f| < 200$ 0 else

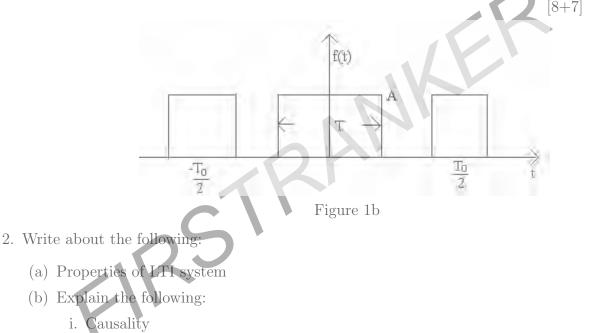
where

Assume that x(t) is ideally sampled at f_s = 300 Hz. Sketch the spectrum of $X_{\delta}(t)$ for |f| < 200

(b) The uniform sampling theorem says that a band limited signal $\mathbf{x}(t)$ can be completely specified by its sampled values in the time domain. Now consider a time limited signal $\mathbf{x}(t)$ that is zero for $|t| \ge T$. Show that the spectrum $\mathbf{x}(f)$ of $\mathbf{x}(t)$ can be completely specified by the sampled values $\mathbf{x}(\mathbf{k}f_0)$ where f_0 $\ge 1/2$ T. Where k is an integer. [8+7]

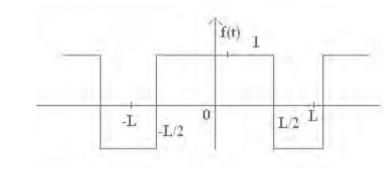
 $\mathbf{R09}$

Code No: A109210402


II B.Tech I Semester Examinations,MAY 2011 SIGNALS AND SYSTEMS Common to BME, ICE, ETM, EIE, ECE Max Marks: 75

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks


- 1. (a) Explain the concept of Fourier Transform for periodic signals.
 - (b) Find out the Fourier Transform of the periodic pulse train shown in figure 1b.

- ii. Stability
- iii. Invertability for an LTI system.

[7+8]

3. (a) Show that the exponential Fourier series for the symmetric square wave shown in figure 3a.

$$f(t) = \frac{2}{\pi} \sum_{n=-\infty}^{\infty} \frac{(-1)^n}{2n+1} e^{j(2n+1)\frac{\pi}{2}}$$

www.firstranker.com

$\mathbf{R09}$

Set No. 3

[8+7]

- (b) Show that the Fourier series of a periodic signal with rotational symmetry contain only odd harmonics. [10+5]
- 4. (a) Derive Parseval's theorem from the frequency convolution property.
 - (b) Find the cross correlation between $[u(t) + u(t-\tau)]$ and $e^{-t} u(t)$. [7+8]
- 5. (a) The signal $g(t) = 10 \cos 20\pi t \cos 200\pi t$ is sampled at the rate of 250 samples per second.
 - i. Determine the spectrum of the resulting sampled signal.
 - ii. Specify the cut-off frequency of the ideal reconstruction filter so as to recover g(t) from its sampled version.
 - iii. What is the Nyquist rate of g(t)?
 - (b) What is Natural sampling?

Code No: A109210402

- 6. (a) Obtain the inverse laplace transform of $F(s) = 1/s^2(s+2)$ by convolution integral.
 - (b) Using convolution theorem find inverse laplace transform of $s/(s^2+a^2)^2$.
 - (c) Define laplace transform of signal f(t) and its region of convergence. [5+6+4]
- 7. (a) Find the inverse z transform of $X(z) = \frac{1}{1024} \left[\frac{1024 z^{-10}}{1 \frac{1}{2}z^{-1}} \right], |z| > 0.$
 - (b) Distinction between Laplace, Fourier and Z transforms. [8+7]
- 8. (a) Which of the following signals or functions are periodic and if what is its fundamental period.
 - i. $g(t) = e^{-j60\pi t}$
 - ii. $g(t) = 10 \operatorname{Sin} (12\pi t) + 4 \operatorname{Cos} (18t)$
 - (b) Let two functions be defined by:

$$x_1(t) = 1$$
, $\sin(20\pi t) \ge 0$

-1, Sin (20 π t) < 0 X₂(t) = t. Sin (2 π t) > 0

$$-t \sin(2\pi t) \le 0$$

Graph the product of these two functions vs time over the time interval -2 < t < 2. [8+7]
