II B.Tech I Semester Examinations,MAY 2011 CHEMICAL PROCESS CALCULATIONS
 Chemical Engineering

Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. (a) A gas mixture contains 0.1234 kg -mole of $\mathrm{HCl}, 0.153 \mathrm{Kg}$-mole of nitrogen, and 0.04037 Kg -mole of oxygen .Calculate its density in $\mathrm{kg} / \mathrm{m}^{3}$ at a pressure of 1.72 atm and a temperature of $40^{\circ} \mathrm{C}$
(b) State and prove law of Amagat.
$[7+8]$
2. (a) By titration, it was found that a sample of water contains alkalinity equivalent to $800 \mathrm{mg} / \mathrm{lit} \mathrm{CaCO}_{3}$. Assuming that the water contains temporary hardness due to $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)$, find the $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)$ content of water.
(b) Explain Baume and API.
3. Pure sulfur is burnet in a burner at the rate of $0.3 \mathrm{~kg} / \mathrm{s}$. fresh air is supplied at 303 K and 100 kpa . The gasess from the burner contain $16.5 \% \mathrm{SO}_{2} 3 \% \mathrm{O}_{2}$ and rest N_{2} on SO_{3} free volume basis. The gasess leave the burner at 1073 k and 101.325 kpa. Calculate
(a) The fraction of sulfur burnet in SO_{3}
(b) The \%excess air over the amount required to oxidize the sulfur to SO_{2}
(c) The volume of dry air in $\mathrm{m}^{3} / \mathrm{s}(\mathrm{d})$. The volume burner gas in $\mathrm{m}^{3} / \mathrm{s}$.
4. (a) Discuss in detail what is heat of formation and how to calculate heat of formation.
(b) Calculate heat of reaction of the following
$\mathrm{HCl}(\mathrm{g})+\mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$
$\mathrm{HCl}(\mathrm{g})$ of change of enthalpy is $-22,063 \mathrm{cal}$
$\mathrm{NH}_{3}(\mathrm{~g})$ of change of enthalpy is -11040 cal
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$ of change of enthalpy is $-75,380$ cal.
5. (a) What do you mean by crystallization? Explain how it is used in industries.
(b) What do you mean by dissolution.
6. Calculate the number of kilocalories required to heat, from 500 to $1500^{\circ} \mathrm{C}, 1$ Cubic meter (standard conditions) of a gas having the following composition by volume :

CO_{2}	70%
$\mathrm{~N}_{2}$	27%
O_{2}	2%
H_{2}	1%
	100%

7. It is proposed to recover acetone which is used as a solvent in an extraction process by evaporation into a stream of nitrogen. The nitrogen enters the evaporator at $30^{\circ} \mathrm{C}$ containing acetone such that its dew point is $10^{\circ} \mathrm{C}$. It leaves at a temp of $25^{\circ} \mathrm{C}$ with a dew point of $20^{\circ} \mathrm{C}$. The atmospheric pressure is 750 mm Hg.
(a) Calculate the vapor concentration of the gases entering and leaving the evaporator expressed in moles of vapor/mole of vapor/mole of vapor free gas.
(b) Calculate the moles of acetone evaporated per mole of the vapor free gas passing through the evaporator.
(c) Calculate the weight of acetone evaporated per $28 \mathrm{~m}^{3}$ of gases entering.
(d) Calculate the volume of gases leaving the evaporator per $28 \mathrm{~m}^{3}$ of gases entering.

Antoine equation for Acetone is: $\log _{10} \mathrm{P}=6.2834-\frac{1231.2}{\mathrm{~T}-41.35}$ where P is in kPa and T is in ${ }^{0} \mathrm{~K}$.
8. Construct Durhing plots for aqueous 10% by weight of NaOH solution. The vapor pressure of water is given by Antoine equation $\ln \mathrm{P}=\mathrm{A}-\mathrm{B} /(\mathrm{T}+\mathrm{C})$ Where p is in $\mathrm{mm} \mathrm{Hg}, \mathrm{T}$ is in ${ }^{0} \mathrm{~K}$ and $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are constants. The values of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ for water are given by 18.3036, 3816.44, -46.13 respectively.
[15]

II B.Tech I Semester Examinations,MAY 2011 CHEMICAL PROCESS CALCULATIONS
 Chemical Engineering

Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. On the basis of data and the chemical reaction given below, find the heat of formation of ZnSO_{4} from elements.
(a) $\mathrm{Zn}+\mathrm{S}$ (rambho) $\rightarrow \mathrm{ZnS}, \Delta \mathrm{H}=-44 \mathrm{kcal} / \mathrm{kg}$. mol
(b) $2 \mathrm{ZnS}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{ZnO}+2 \mathrm{SO}_{2}, \Delta \mathrm{H}=-221.88 \mathrm{kcal} / \mathrm{kg} . \mathrm{mol}$
(c) $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}, \Delta \mathrm{H}=-46.88 \mathrm{kcal} / \mathrm{kg} . \mathrm{mol}$
(d) $\mathrm{ZnO}+\mathrm{SO}_{3} \rightarrow 2 \mathrm{ZnSO}_{4}, \Delta \mathrm{H}=-55.10 \mathrm{kcal} / \mathrm{kg}$. mol.
2. (a) The flue gas analysis CO: $7.26 \%, \mathrm{CO}_{2}: 4.2 \%, \mathrm{O}_{2}: 7.5 \%, \mathrm{~N}_{2}: 81.04 \%$ on mole basis. Express the composition in weight basis and also find the average molecular weight.
(b) The analysis of a sample of glass yields $7.8 \% \mathrm{Na}_{2} \mathrm{O}, 7 \% \mathrm{MgO}, 9.7 \% \mathrm{ZnO}, 2 \%$ $\mathrm{Al}_{2} \mathrm{O}_{3}, 8.5 \% \mathrm{~B}_{2} \mathrm{O} 3$ and $65 \% \mathrm{SiO}_{2}$ (by weight). Convert the composition into mole\%.
Atomic weights: Na: 22.98, Mg : $24.3, \mathrm{Zn}: 65.37, \mathrm{Al}: 26.98, \mathrm{~B}: 10.81, \mathrm{Si}:$ 28.086 .
3. (a) Calculâte the volume occupied by 13.6 kg of chlorine at a pressure 743 mmHg and $21.1^{\circ} \mathrm{C}$.
(b) Calculate the weight of $3 \mathrm{~m}^{3}$ of water vapor, measured at a pressure of 15.5 mmHg and $23^{\circ} \mathrm{C}$.
(c) What is the ideal gas equation of state? At what conditions does the ideal gas equation provide the most accurate estimates?
$[5+5+5]$
4. (a) Explain the orsat analysis.
(b) A hydro carbon fuel is burnet with excess air, the orsat analysis of the flue gas shows $10.2 \% \mathrm{CO}_{2}, 1 \% \mathrm{CO}, 8.4 \% \mathrm{O}_{2}$, and $80.4 \% \mathrm{~N}_{2}$. What is the atomic ratio of H to C in the fuel?
5. (a) Write short notes on Lennard - Jones potential.
(b) Explain corresponding states.
(c) Write short notes on polarity of molecules.
6. (a) A solution of potassium dichromate in water contains $13 \% \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ by weight. From 1000 lb of this solution are evaporated 640 lb of water. The remaining solution is cooled to $20^{\circ} \mathrm{C}$. calculate the amount and \% yield of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ crystals produced. Solubility of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ at $20^{\circ} \mathrm{C}$ is $0.390 \mathrm{lb}-\mathrm{mol}$ per 1000 lb $\mathrm{H}_{2} \mathrm{O}$
(b) A solution of Sodium nitrate in water contains 100 grms of NaNO_{3} per 1000 grams of water. Calculate the amount of ice formed in cooling 1000 grams of this solution to a temperature of $-15^{\circ} \mathrm{C}$.
7. Utilizing the thermal data for diphenyl, $\left(C_{6} H_{5} . C_{6} H_{5}\right)$ tabulated below and vapor pressure data from a handbook, estimate the following :
(a) Critical Temperature.
(b) Boiling Point at 25psi.
(c) Heat of vaporization at 25 psi, as Btu per pound.
(d) Enthalpy of 1lb of saturated diphenyl vapor at 25psi relative to solid diphenyl at $32^{0} \mathrm{~F}$.

Data of diphenyl :
Normal Boiling Point $\quad 255^{\circ} \mathrm{C}$
Melting Point
$71^{0} \mathrm{C}$
Specific heat of solid diphenyl 0.385 Btu per lb per ${ }^{0}$ F
Heat of fusion
46.9 Btu per 1 b.

Specific heat of liquid diphenyl $\quad 0=0.300+0.00120 t^{0} \mathrm{C}$
8. Acetone is used as a solvent in a certain process. Recovery of the acetone is accomplished by evaporation in to a stream of N_{2} followed by cooling and compression of the final gas mixture. In the solvent recovery unit 5000 kg of acetone are removed per hour. The N_{2} is admitted at $38^{\circ} \mathrm{C}$ and 750 mm Hg . Partial pressure of acetone in incoming nitrogen is 10 mm Hg . The nitrogen leaves at $29.4^{\circ} \mathrm{C}, 740 \mathrm{~mm} \mathrm{Hg}$ and 85% saturation.
(a) How many m^{3} of incoming gas must be admitted per hour to obtain the required rate of evaporation of the acetone?
(b) How many m^{3} of gases leave the unit per hour? (Molecular weight of Acetone $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$ is 58 . Vapor pressure of acetone at $29.4^{\circ} \mathrm{C}$ is 287 mm Hg$)$.

II B.Tech I Semester Examinations,MAY 2011 CHEMICAL PROCESS CALCULATIONS
 Chemical Engineering

Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. Stock containing 1.562 gm of water per gm of dry stock is to be dried to 0.099 gm as shown in figure 1. For each gm of stock (dry basis) 52.5 gm of dry air pass through the drier, leaving at a humidity of 0.0525 . The fresh air is supplied at a humidity 0.0152. Calculated the fraction of air recirculated.

Figure 1:
2. Calculate the theoretical flame temperature of a gas containing $20 \% \mathrm{CO}$ and 80% N_{2} when bumed with 150% excess air, both air and gas being at $25^{\circ} \mathrm{C}$. Heat of formation, $\Delta \mathrm{H}$ kcal / kg. mol.
3. (a) The vapor pressure of chloroform is given by the Antoine equation.

In $\mathrm{P}^{S}=13.9582-\frac{2696.79}{(T-46.16)}$
Where pressure is in kPa and temperature in K . Determine
i. The boiling of chloroform at 50 kPa and
ii. The vapor pressure at 300 K .
(b) Explain briefly critical properties.
4. Calculate the number of calories required to heat 1000 grams of each of the following aqueous solutions from $0-100^{\circ} \mathrm{C}$.
(a) $5 \% \mathrm{NaCl}$ by weight.
(b) $20 \% \mathrm{NaCl}$ by weight.
(c) $20 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by weight.
(d) $20 \% \mathrm{KOH}$ by weight.
(e) $20 \% \mathrm{NH}_{4} \mathrm{OH}$ by weight
(f) $20 \% \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}$ by weight.
5. (a) 200 kg of pure sulfur is burnt with 25% excess of dry air to convert S completely into $\mathrm{SO}_{3} .4 .45 \%$ of S is oxidized to SO_{3} and 95.5% to SO_{2}. Calculate the composition (mole \%) of the exit gas.
(b) 10 kg of liquid A of specific gravity 1.17 is mixed with 5 kg of liquid B of specific gravity 0.83 . Assuming that there is no volume change on mixing what is the specific gravity of the mixture? (take density of water is 1000 $\mathrm{kg} / \mathrm{m}^{3}$).
6. (a) Write the difference between flue gas analysis and orsat analysis on dry and wet basis.
(b) pure carbon is burned in a oxygen. The flue gas analysis is $\mathrm{CO}_{2} 75$ mole \%, $\mathrm{CO} 14 \mathrm{~mol} \%, \mathrm{O}_{2} 11 \mathrm{~mol} \%$. What was the present excess oxygen used? [15]
7. A volume of moist air of 0.792 cubic meters at a total pressure of 740 mmHg and a temperature of $30^{\circ} \mathrm{C}$ contains water vapor in such proportions that its partial pressure is 22 mmHg . Without the total pressure being changed, the temperature is reduced to $15^{\circ} \mathrm{C}$ and some of the water vapor removed by condensation. After cooling it is found that the partial pressure of water vapor is 12.7 mmHg . Using partial pressure method, calculate:
(a) The volume of gas after cooling and
(b) The weight of water removed
8. Air at $38^{\circ} \mathrm{C}, 70 \%$ saturated with water vapour is heated to $82.4^{\circ} \mathrm{C}$ and passed through a dryer where it gets adiabatically cooled to $54.4^{\circ} \mathrm{C}$ and humidified to 40% saturation. The air leaving the dryer is cooled in a cooler to $26.6^{\circ} \mathrm{C}$ and reheated to $38^{\circ} \mathrm{C}$. Determine:
(a) Molar humidity of air entering the first heater
(b) Molar humidity and \% saturation of air leaving the first heater
(c) Molar humidity of air leaving the dryer
(d) Water evaporated in the dryer per kg mole of air entering.

The vapour pressure of water is as follows:
$\begin{array}{lllll}\text { Temperature }{ }^{0} \mathrm{C} & 26.6 & 38 & 54.4 & 82.4\end{array}$
$\begin{array}{lllll}\text { Vapor pressure, } \mathrm{mmHg} & 26.2 & 49 & 115 & 388.4\end{array}$

II B.Tech I Semester Examinations,MAY 2011 CHEMICAL PROCESS CALCULATIONS
 Chemical Engineering

Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. Calculate the heat equivalent in Btu of the external work of vaporization of 1 lb of water at a temperature of $80^{\circ} \mathrm{F}$, assuming that water vapor follows the ideal-gas law.
2. A natural gas has the following composition on volume basis $\mathrm{CH}_{4}-83.5 \%, \mathrm{C}_{2} \mathrm{H}_{2}-9 \%$ and $\mathrm{N}_{2}-7.5 \%$. Calculate
(a) composition in mole $\%$
(b) the composition in weight \%,
(c) average molecular weight of the gas and
(d) specific gravity of the mixture.
3. (a) Discuss about material balance involving chemical reaction.
(b) Write difference between conversion, selectivity and yield?
4. (a) A mixture of benzene vapour and nitrogen has a relative humidity of 60% at 297 K ; the total pressure being $102.4 \mathrm{kN} / \mathrm{m}^{2}$. If the mixture is cooled to 283 K , to what pressure must the mixture to be compressed in order to recover 75% of the benzene? The vapour pressure of benzene is $12.2 \mathrm{kN} / \mathrm{m}^{2}$ and 6.05 $\mathrm{kN} / \mathrm{m}^{2}$ at 297 K and 283 K , respectively.
(b) Define dry and wet bulb temperature.
5. A fertilizer plant produces ammonia by reforming naphtha with steam, the synthesis gas, obtained from methanator is passed through the converter after mixing the recycle stream. Based on the operating parameters of the converter the conversion per mass is limited to 25%. The composition of the fresh feed is $\mathrm{CH}_{4}-0.7 \%$, Ar $-0.3 \%, \mathrm{H}_{2}-74.25 \%$, and $\mathrm{N}_{2}-24.75 \%$ on mol basis. The converter outlet gases pass through the heat exchanger where it cools down. Later the gases are passed through a chiller come separator which separates 65% of the ammonia present in the converter outlet gas. Non considerable gases and uncondensed ammonia are recycled back. Inorder to limit the concentration of inert $\left(\mathrm{CH}_{4}+\mathrm{Ar}\right)$ to 10 mols in the mixed feed, a portion of the recycle stream is purged based on a fresh feed rate of 100 kmols calculate
(a) The recycle feed rate and recycle ratio.
(b) The purge gas rate.
6. (a) When heated to $100^{\circ} \mathrm{C}$ and 720 mmHg pressure 17.2 grams of $N_{2} O_{4}$ gas occupy a volume of 11450 cc . Assuming the ideal gas law applies calculate the percentage dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ to NO_{2}.
(b) Calculate the density in $\mathrm{kg} / \mathrm{m}^{3}$ at $736.6 \mathrm{~mm} . \mathrm{Hg}$ and $30^{\circ} \mathrm{C}$ of a mixture of hydrogen and oxygen that contains $11.1 \% \mathrm{H}_{2}$ by weight.
[15]
7. (a) An approximate Equation for $\mathrm{C}_{P}(\mathrm{cal} / \mathrm{gm} \mathrm{mol} \mathrm{K})$ of gaseous HCl is $\mathrm{C}_{P}=6.6$ $+0.96 \times 10^{-3} \mathrm{~T}$.Calculate the heat required to raise the temperature of 1 gm mole of Gas from $100-200^{\circ} \mathrm{C}$.
(b) The following enthalpy changes are known from experiments from the reactions below at 25 C in Standard State. Calculate the standard heat of formation of Propylene gas.

Reactions	$\Delta \mathrm{H}$ kcal $/ \mathrm{kg}$. mol
$\mathrm{C}_{3} \mathrm{H}_{6}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$	-29.60
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{5} \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	-530.60
$\mathrm{H}_{2}(\mathrm{~g})+0.5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2}(\mathrm{l})$	-68.30
$\mathrm{C}($ graphite $)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$	-94.05

8. The following data in the vapour pressure data for water vapour. Determine the latent heat of vaporization at normal boiling point.

Temperature $\left({ }^{0} \mathrm{~F}\right)$	10	40	80	120	160	210	212
Pressure (inches of Hg):	0.07091	0.2478	1.0321	3.4458	9.652	28.755	29.922

