Code: R7312302

R07

B.Tech III Year I Semester (R07) Supplementary Examinations, May 2013

BIOCHEMICAL REACTION ENGINEERING - I

(Biotechnology)

Time: 3 hours Max. Marks: 80

Answer any FIVE questions All questions carry equal marks

- 1 (a) Differentiate between order and molecularity of a reaction.
 - (b) The rate constants of a certain reaction are $1.6 \times 10^{-3} \, \text{s}^{-1}$ and $1.625 \times 10^{-2} \, \text{s}^{-1}$ at 10°C and 30°C respectively. Calculate the activation energy.
- 2 (a) Explain continuous sterilization with a neat sketch.
 - (b) Differentiate between batch, fed-batch and continuous mode of operation.
- 3 Explain the models for inhibition kinetics.
- Assume that experimental measurement for certain organisms have shown that cells can convert two-thirds (wt/wt) of the substrate carbon (alkane or glucose) to biomass.
 - (a) Calculate the stoichiometric coefficients for the biological reactions: Hexadecane: $C_{16}H_{34} + aO_2 + bNH_3 \rightarrow C$ ($C_{4.4}H_{7.3}N_{0.86}O_{1.2}$) + dH_2O + eCO_2 Glucose: $C_6H_{12}O_6 + aO_2 + bNH_3 \rightarrow C$ ($C_{4.4}H_{7.3}N_{0.86}O_{1.2}$) + dH_2O + eCO_2 .
 - (b) Calculate the yield coefficients $Y_{X/S}(g \text{ dw cell }/g \text{ substrate})$, $Y_{X/O_2}(g \text{ dw cell }/gO_2)$ for both reactions.
- 5 Reactant A in a liquid produces R and S by following reactions.

Both these reactions are first order.

A feed with $C_{AO}=1$, $C_{RO}=C_{SO}=0$ enters into two mixed flow reactors in series ($\tau_1=2\ min$; $\tau_2=5\ min$). The composition in first reactor is $C_{A1}=0.40$, $C_{R1}=0.40$ and $C_{S1}=0.2$. Find composition leaving second reactor.

- 6 (a) Explain about activation energies of enzymatically catalyzed and un-catalyzed reactions.
 - (b) Explain about lock and key model of substrate complex formation.
- 7 (a) Give the advantages and disadvantages of different immobilization techniques.
 - (b) Give the effect of P^H and temperature on immobilized reaction kinetics.
- B Differentiate between film and pore diffusion effects on kinetics of immobilized enzyme reactions.
