III B.Tech. I Semester Supplementary Examinations, May - 2013
COMPLEX VARABLEDS AND STATISTICAL METHODS
(Electrical and Electronic Engineering)

Time: 3 Hours

Max Marks: 75

Answer any FIVE Questions
All Questions carry equal marks

1. a) If $f(z)$ is analytic function then prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|\operatorname{Re} f(z)|^{2}=2\left|f^{\prime}(z)\right|^{2}$.
b) Find the analytic function $f(z)=u+i v$ if $u=a(1+\cos \theta)$.
2. a) State Cauchy's integral formula. Also evaluate $\int_{C} \frac{z}{z^{2}+1} d z$, where $C:\left|z+\frac{1}{z}\right|=2$.
b) Find the Laurent's series of $f(z)=\frac{7 z-2}{(z+1) z(z-2)}$ in the annulus $1<|z+1|<3$.
3. a) Evaluate $\int_{0}^{2 \pi} \frac{1}{(5-3 \sin \theta)^{2}} d \theta$ using Residue theorem.
b) Evaluate $\int_{C} \frac{e^{z}}{\left(z^{2}+\pi^{2}\right)^{2}} d z$, where $C:|z|=4$.
4. a) Discuss the transformation $w=\cos z$.
b) Show that the transformation $w=\frac{2 z+3}{z-4}$ changes the circle $x^{2}+y^{2}-4 x=0$ into the straight line $4 u+3=0$.
5. a) Six cards are drawn from a well-shuffled pack of 52 cards, then find the probability that (i) at least 3 are diamonds (ii) none is a diamond.
b) In a normal distribution exactly 7% of the items are under 35 and 89% are under 63 . What are the mean and standard deviation of the distribution?
6. a) Define sampling distribution. A random sample of size 81 is taken from an infinite population having the mean 65 and standard deviation 10 . What is the probability that the mean will be between 66 and 68 ?
b) A random sample of 500 apples was taken from a large consignment and 60 were found to be defective. Find the 98% confidence limits for the percentage number of defective apples in the consignment.
7. a) A manufacturer of electric bulbs claims that the percentage of defectives in his product does not exceed 6. A sample of 40 bulbs is found to contain 5 defectives. Would you consider the claim justified?
b) A random sample of 400 flower stems has an average length of 15 cm . Can this be regarded as a sample from a large population with mean 16 cm and SD 5 cm ?
8. a) A machine is designed to produce insulating washers for electrical devices of average thickness of 0.025 cm . A random sample of 10 washers was found to have a mean thickness of 0.024 cm . with a standard deviation of 0.002 cm . Test the significance of the deviation at 5% level.
b) In an investigation on the machine performance, the following results are obtained.

Machine	No. of units inspected	No. of units defectives
Machine 1	375	17
Machine 2	450	22

Test whether there is any significant performance of two machines at $\alpha=0.05$.

III B.Tech. I Semester Supplementary Examinations, May - 2013
COMPLEX VARABLEDS AND STATISTICAL METHODS
(Electrical and Electronic Engineering)
Time: 3 Hours
Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks

1. a) Show that the function $f(z)=\sqrt{|x y|}$ is not analytic at the origin, although Cauchy Riemann equations are satisfied at that point.
b) Find the conjugate harmonic of $u=e^{x^{2}-y^{2}} \cos 2 x y$. Hence find $f(z)$ in terms of z.
2. a) Evaluate $\int_{C} \frac{z+1}{z^{2}+2 z+4} d z$, where $C:|z+1+i|=2$ by Cauchy's integral formula.
b) Express $f(z)=\frac{z}{(z-1)(z-3)}$ in series of positive and negative powers of $(z-1)$.
3. a) Evaluate $\int_{C} \frac{12 z-7}{(2 z+3)(z-1)^{2}} d z$, where $C: x^{2}+y^{2}=4$.
b) Evaluate $\int_{0}^{\pi} \frac{\cos 2 \theta}{5+4 \cos \theta} d \theta$ using Residue theorem.
4. a) Find the image of the domain in the z-plane to the left of the line $x=-3$ under the transformation $w=z^{2}$.
b) Find the bilinear transformation which maps the points $1, i,-1$ in to the points 2, i, -2 .
5. a) Ten coins are thrown simultaneously. Find the probability of getting atleast seven heads.
b) The marks obtained in statistics examination are found to be normally distributed. If 15% of students are ≥ 60 marks, 40% of the students <30 marks, . Find the mean and standard deviation of the marks.
6. a) A random sample of size 25 from a normal population has the mean $\bar{x}=47.5$ and the standard deviation $s=8.4$. Does this information tend to support or refuse the claim that the mean of the population is $\mu=42.1$.
b) What do you mean by an estimator?. Explain the properties of a good estimator.
7. a) A die is thrown 256 times. An even digit turns up 150 times, can we say that the die is unbiased.
b) In a city $A, 20 \%$ of a random sample of 900 school boys has a certain slight physical defect. In another city $B, 18.5 \%$ of a random sample of 1600 school boys had the same defect. Is the difference between the proportions significant at 0.05 level of significance?
8. a) The lifetime of electric bulbs for a random sample of 10 from a large consignment gave the following data.

Item	1	2	3	4	5	6	7	8	9	10
Life in 000 hrs.	4.2	4.6	3.9	4.1	5.2	3.8	3.9	4.3	4.4	5.6

Can we accept the hypothesis that the average lifetime of bulbs is 4000 hrs .
b) The measurements of the output of two units have given the following results.

Assuming that both samples have been obtained from the normal populations at 5\% significant level, test whether the two populations have the same variance.

III B.Tech. I Semester Supplementary Examinations, May - 2013

COMPLEX VARABLEDS AND STATISTICAL METHODS

(Electrical and Electronic Engineering)
Time: 3 Hours
Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks

1. a) If $f(z)$ is analytic function then show that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \log \left|f^{\prime}(z)\right|=0$.
b) Find the analytic function $f(z)=u(r, \theta)+i v(r, \theta)$ such that $u(r, \theta)=r^{2} \cos 2 \theta-r \cos \theta+2$.
2. a) State Cauchy's integral formula and using it evaluate $\int_{C} \frac{\cos \pi z^{2}}{(z-1)(z-2)^{2}} d z$, where $C:|z|=3$.
b) Expand $f(z)=\frac{1}{z^{2}-3 z+2}$ in the region $0<|z-1|<2$.
3. a) Evaluate $\int_{C} \frac{1}{\sinh z} d z$, where $C:|z|=4$.
b) Evaluate $\int_{0}^{2 \pi} \frac{\sin 3 \theta}{5-3 \cos \theta} d \theta$ using Residue theorem.
4. a) Discuss about the transformation $w=\cos z$.
b) Find the bilinear transformation which maps the points $0,1, \infty$ in the z-plane into $-5,-1,3$ respectively in the w-plane. What are the invariant points in this transformation.
5. a) State and prove Baye's theorem.
b) In a normal distribution 31% of the items are 45 and 8% are over 64 . Find the mean and standard deviation of the distribution.
6. a) A research worker wishes to estimate mean of a population by using sufficiently large sample. The probability is 95% that sample mean will not differ from the true by more than 25% of the standard deviation. How large a sample should be taken?
b) Among 900 people in a state 90 are found to be chapathi eaters. Construct 99% confidence interval in the true proportion?
7. a) A coin is tossed 960 times and head turned up 183 times. Is the coin unbiased? b) A sample poll of 300 voters from district A and 200 voters from district B showed that 56% and 48% respectively, were in favor of a given candidate. At 0.05 level of significance, test the hypothesis that there is a difference between districts.
8. a)The lifetime of electric bulbs for a random sample of 10 from a large consignment gave the following data.

Item	1	2	3	4	5	6	7	8	9	10
Life in 000 hrs.	4.2	4.6	3.9	4.1	5.2	3.8	3.9	4.3	4.4	5.6

Can we accept the hypothesis that the average lifetime of bulbs is 4000 hrs .
b) Pair of dice are thrown 360 times and the frequency of each sum is indicated below.

Sum	2	3	4	5	6	7	8	9	10	11	12
Frequency	8	24	35	37	44	65	51	42	26	14	14

Would you say that the dice are fair on the basis of the chi-square test at 0.05 level of significance.

III B.Tech. I Semester Supplementary Examinations, May - 2013
COMPLEX VARABLEDS AND STATISTICAL METHODS
(Electrical and Electronic Engineering)

Time: 3 Hours

Max Marks: 75

Answer any FIVE Questions
All Questions carry equal marks *****

1. a) If $f(z)$ is a regular function of z then prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$.
b)Show that $u(x, y)=e^{2 x}(x \cos 2 y-y \sin 2 y)$ is harmonic and find its harmonic conjugate.
2. a)Using Cauchy's integral formula, evaluate $\int_{C} \frac{\cosh \pi z}{z\left(z^{2}+1\right)} d z$, where $C:|z|=2$.
b) Expand $\frac{e^{2 z}}{(z-1)^{3}}$ about $z=1$ as a Laurent's series. Also find the region of convergence.
3. a) Find the poles and residues at each pole of $\tanh z$.
b) Using the Residue theorem, evaluate $\int_{C} \frac{z e^{z}}{\left(z^{2}+9\right)} d z$, where $C:|z|=5$. using Residue theorem.
4. a) If $w=\frac{1+i z}{1-i z}$ then find the image of $|z|<1$.
b) Find the bilinear transformation which maps the points $0,1, \infty$ in the z-plane into $-5,-1,3$ respectively in the w-plane. What are the invariant points in this transformation.
5. a) Six dice are thrown 243 times. How many times do you expect at least tow dice to show 5 or 6 .
b) Suppose 10% of the probability for a normal distribution $N\left(\mu, \sigma^{2}\right)$ is below 35 and 5% above 90 . What are the values of μ and σ.?
6. a) A normal population has a mean of 0.1 and standard deviation of 2.1. Find the probability that mean of a sample of size 900 will be negative.
b) If the mean breaking strength of copper wire is 505 Lbs with a standard deviation of 15 Lbs . the sample is 49 . Construct 95% confidence interval for the mean.
7. a) A die is thrown 960 times and it falls with 5 upwards 184 times. Is the die unbiased at a level of significance of 0.01 .
b) A random sample of 400 flower stems has an average length of 15 cm . Can this be regarded as a sample from a large population with mean 16 cm and SD 5 cm .
8. a) A random sample of size 25 from a normal population has the mean 47.5 and the standard deviation 8.4. Does this information support or refute the claim that the mean of the population is $\mu=42.5$?
b) The measurements of the output of two units have given the following results. Assuming that both samples have been obtained from the normal populations at 5\% significant level, test whether the two populations have the same variance.

Unit $A:$	14.1	10.1	14.7	13.7	14.0
Unit $B:$	14.0	14.5	13.7	12.7	14.1

