Code: R7100306
R7
B.Tech I Year (R07) Supplementary Examinations, June 2013

CLASSICAL MECHANICS

(Mechanical Engineering)

Time: 3 hours
Max Marks: 80
Answer any FIVE questions
All questions carry equal marks

1 (a) Define an explain the following terms:
(i) Coplanar and non coplanar forces. (ii) Collinear and concurrent forces.
(b) A particle is acted by three forces with magnitude $2 \mathrm{kN}, 2 \sqrt{2} \mathrm{kN}$ and 1 kN . The first force is a long the horizontal directives, second makes an angle of 45°, with horizontal and third is along vertical direction. Determine the resultant of the given forces.

2 (a) Explain and define the term "Free body diagram". Draw the free body diagram of a ball of weight 'W' placed on a horizontal surface.
(b) Two identical rollers each of weight $\mathrm{W}=1000 \mathrm{~N}$ are supported by an inclined plane and vertical wall as shown in figure (a) find the reactions at the point of supports A, B and C. Assume all the surfaces to be smooth.

3 (a) Determine the control of a triangle of base ' b ' and height ' h '.
(b) Locate the control of the I - section shown in figure.

Contd. in Page 2
Page 1 of 2

4 (a) Prove the parallel axis theorem in the determination of moment of initial of area with the help of a neat sketch.
(b) Determine the moment of inertia of the solid sphere of radius ' R ' about its diameter axis.

5 Find out the stresses in all the members of the truss as shown in figure.

6 (a) A burglar's car had a start with an accelerator of $2 \mathrm{~m} / \mathrm{sec}^{2}$. A police vigilant party came after 5 seconds and continued to chase the burglar's car with a uniform velocity of 20 $\mathrm{m} / \mathrm{sec}$. Find the time taken in which the police van will overtake the burglar's car.
(b) Two bodies weighing 300 N and are hanged to the ends of a rope pressing over an ideal pulley as shown in figure. With what accelerator the heavier body comes down. What is the tension in the string?

7 (a) State the work energy principle. Derive the work energy equation for translation.
(b) A block weighing 2500 N rests on a level plane for which coefficient of friction is 0.20 , this block is pulled by a force of 1000 N acting at an angle of 30° to the horizontal. Find the velocity of the block after it moves 30 m starting from rest. If the force of 1000 N is then removed, how much further will it move? Use work energy method.

8 A vertical shaft 100 mm in diameter and 1 mm length has its upper end fixed to the ceiling. At the other end it carries a disc of weight 5000 N having a radius of gyration of 450 mm . The modulus of rigidity for the material of the shaft is $0.8 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. Determine the frequency of torsional vibrations and transverse vibrations if $\mathrm{E}=2 \times 10^{5}$ $\mathrm{N} / \mathrm{mm}^{2}$.

