Set No. 1

IV B.Tech I Semester Supplementary Examinations, March 2013 DIGITAL IMAGE PROCESSING
 (Electronics \& Communication Engineering)

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. Explain following relations between pixels
(a) Relations,Equivalence and transitive closures of pixels.
(b) Concept of distance measures between pixels.
2. (a) Give the expression and explain for 2D convolution expression for AXB size Image.
(b) What is meant by wrap around error.
3. Discuss the following:
(a) High pass spatial filters
(b) Low pass spatial filters.
4. Sketch perspective plot of an 2-D Ideal High pass filter transfer function and filter cross section and explain its usefulness in Image enhancement.
5. Consider the following image composed of solid color squares for discussing your answer, choose a gray scale consisting of eight shades of gray, 0 through 7 , where 0 is black and 7 is white. Suppose that the image is converted to H S I color space,. Answer the following questions:
(a) Sketch the hue image.
(b) Sketch the saturation image.
(c) Sketch the intensity image.

Note : use specific numbers for the grade shades. shown in figure 5 c.

Figure 5c
6. (a) What is the function of Inverse Filter
(b) Draw the Appropriate Diagram for Inverse Filter
(c) Explain about Pseudoinverse Filter.

$$
[5+5+6]
$$

7. (a) Explain about Sobel edge Detector.
(b) Write about Roberts edge Detector.
8. Explain about Fidelity Criteria.

Set No. 2

IV B.Tech I Semester Supplementary Examinations, March 2013
DIGITAL IMAGE PROCESSING
(Electronics \& Communication Engineering)

Answer any FIVE Questions

All Questions carry equal marks

1. The 3×3 mask shown below is frequently used to compute the derivative in the y -direction at each point in an image.
$\begin{array}{lll}-1 & 0 & 1\end{array}$
$\begin{array}{lll}-2 & 0 & 2\end{array}$
$\begin{array}{lll}-1 & 0 & 1\end{array}$
Give an ALU procedure to implement this operation.
2. (a) Find Fourier transform 2 -D sinusoidal function $n(x, y)=A \sin \left(u_{0} x+v_{0} y\right)$
(b) Obtain the spectrum in above case.
$[10+6]$
3. Explain following spatial filters.
(a) Median filter
(b) Min. filter
(c) Max.filter
(d) Low pass filter.
4. Give the expression for 2-D Butterworth Low pass filter transfer function and sketch it. Explain its usefulness in Image enhancement.
5. Derive the CMY transformations to generate the complement of a color image. [16]
6. Explain the following:
(a) Gaussian noise
(b) Rayleigh noise.
7. (a) Explain about Prewitt edge Detector.
(b) Write about Roberts edge Detector.
8. Write about the following:
(a) Interpixel Redundancy
(b) Psychovisual Redundancy.

Set No. 3

IV B.Tech I Semester Supplementary Examinations, March 2013 DIGITAL IMAGE PROCESSING
 (Electronics \& Communication Engineering)

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. Explain following relations between pixels
(a) Neighbors of pixels
(b) Connectivity of pixels
(c) Labeling of connected components.
2. (a) Find Fourier transform 2 -D sinusoidal function $n(x, y)=A \sin \left(u_{0} x+v_{0} y\right)$
(b) Obtain the spectrum in above case.
3. What is spatial filtering? How it is useful for Image enhancement, also discuss different types spatial filters used in Image enhancement.
4. Suppose that you form a Low pass spatial filter that averages the 4- neighbors of point (x, y), but excludes the point (x, y) itself
(a) Find the equivalent filter $\mathrm{H}(\mathrm{u}, \mathrm{v})$ in the frequency domain
(b) Show that your result a low pass filter.
5. Derive the CMY intensity mapping function of $\mathrm{si}=\mathrm{kri}+(1-\mathrm{k})$ where $\mathrm{i}=1,2,3$ from its RGB counterpart in si $=$ kri where $\mathrm{i}=1,2,3$.
6. Explain the following Order-Statistics Filters.
(a) Max and min filters
(b) Median filter
(c) Alpha-trimmed mean filter.
7. Explain about Line detection using the Hough Transform.
8. Write about the following:
(a) Interpixel Redundancy
(b) Psychovisual Redundancy.

Set No. 4

IV B.Tech I Semester Supplementary Examinations, March 2013 DIGITAL IMAGE PROCESSING (Electronics \& Communication Engineering)

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. A common measure of transmission for digital data is the baud rate, defined as the number of bits transmitted per second. Generally, transmission is accomplished in packets consisting of starting bit, a byte of information, and a stop bit. Using this approach, answer the following.
(a) How many minutes would it take to transmit a 512×512 image with 128 grey levels at 300 baud?
(b) What would the time be at 9600 baud?
(c) Repeat
(a) and
(b) for a 1024×1024 image 128 grey levels.
2. Discuss the basics separable transforms. Also give example for it.
3. Discuss the following:
(a) High pass spatial filters
(b) High boost spatial filters.
4. Explain the concept of generation of spatial masks from frequency domain specifications.
5. Show that the saturation component of the complement of a color image cannot be computed from the saturation component of the input image alone.
6. Explain the following Order-Statistics Filters.
(a) Max and min filters
(b) Median filter
(c) Alpha-trimmed mean filter.
7. A binary image contains straight lines oriented horizontally, vertically, at 45° and at -45^{0} give a set of 3×3 mask that can be used to detect 1-pixel-long brakes in these lines.assume that the gray levels of lines is one and that the gray level of the background is 0 .
8. A binary erasure channel is one in which there is a finite probability β that a transmitted symbol will not be received. The channel has three possible outputs: $a 0$, an erasure (no received symbol), and a1. These three outcomes form the three
rows of the binary erasure channel matrix.
$\mathrm{Q}=\left[\begin{array}{cc}1-\beta & 0 \\ \beta & \beta \\ 0 & 1-\beta\end{array}\right]$
(a) Find the capacity of the channel.
(b) Would you prefer a binary symmetric channel with a 0.125 probability of error or an erasure channel with probability of erasure $\beta=0.5$?
[16]
