B.Tech II Year II Semester (R09) Regular \& Supplementary Examinations, April/May 2013 DESIGN AND ANALYSIS OF ALGORITHMS
(Common to CSS, IT and CSE)
Time: 3 hours
Max Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 (a) Give brief description about performance measurement.
(b) Write an algorithm to implement magic square.

2 (a) Define collapsing rule. Write the algorithm for COLLAPSING FIND by using COLLAPSING RULE.
(b) Draw the different trees for the following sets $S_{1}=\{1,7,8,9\}, S_{2}=\{2,5,10\}, S_{3}=\{3,4,6\}$ with root nodes as 1,5 and 3 .

3 (a) Draw the tree calls of the function merge for the following set of elements:

$$
(5,80,30,20,50,10,70,60,40,90)
$$

(b) Sort the above set of elements by using merge sort.

4 With the help of a suitable example, explain the greedy knapsack.
5 Find the shortest path b / w all pairs of nodes in the following graph.

6 (a) Explain how the solution to the backtracking problems is represented. And how it is built.
(b) Give the explicit and implicit constraints in 8 -queens problem.

7 Solve the traveling sales man problem for the following graph by using branch and bound.

Explain about decision and optimization problems with an examples.
B.Tech II Year II Semester (R09) Regular \& Supplementary Examinations, April/May 2013 DESIGN AND ANALYSIS OF ALGORITHMS
(Common to CSS, IT and CSE)
Time: 3 hours
Max Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 (a) Explain the different areas of research where the algorithms can be applied.
(b) Explain how to identify the repeated elements.

2 (a) Explain the scheme to construct bi-connected graph.
(b) What is articulation point? Explain with example.

3 (a) Write an algorithm to sort N numbers in ascending order using merge sort.
(b) Compute the time complexity for merge sort.

4 (a) Present a greedy algorithm for sequencing unit time jobs with deadlines and profits.
(b) Present an optimal randomized algorithm for minimum cost spanning trees.

5 Find the optimal sequence by using traveling sales person for the following given instance.
$\left.\begin{array}{cccc} & \mathrm{A} & \mathrm{B} & \mathrm{C} \\ \mathrm{A} \\ \mathrm{A} \\ \mathrm{B} \\ \mathrm{C} \\ \mathrm{D} & {\left[\begin{array}{c}\alpha \\ 12\end{array}\right.} & 12 & 5 \\ 11 & \alpha & 13 & 6 \\ 4 & 9 & \alpha & 18 \\ 10 & 3 & 2 & \alpha\end{array}\right]$

6 (a) Apply backtracking to the problem of finding a Hamiltonian circuit in following graph.

(b) Write the implementation of the above algorithm.

7 (a) Write FIFOBB algorithm for the 0/1 knapsack problem.
(b) Explain the general method of branch and bound.

8 (a) Prove that if $X \in N P$ y is NP-hard, then $X \leq_{T}^{P} Y$. In other words, NP-hard problems are at least as hard as any problems in NP.
(b) Prove that any two NP-complete problems are polynomially turning equivalent.

B.Tech II Year II Semester (R09) Regular \& Supplementary Examinations, April/May 2013
 DESIGN AND ANALYSIS OF ALGORITHMS

(Common to CSS, IT and CSE)
Time: 3 hours
Max Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 (a) Write Miller-Rabin's primality testing algorithm.
(b) Discuss the different approaches to find the time complexity of algorithm.

2 (a) Give the trees for the set $\{1,2,3,4,5, \ldots n\}$ by using weighting rule.
(b) Give an algorithm for implementation of union instruction using linked list and explain its implementation.

3 (a) Derive the time complexity for strassen's matrix multiplication.
(b) How many additions, multiplications and subtractions are needed for a 2×2 matrix multiplication?

4 (a) Write a detailed note on job sequencing with deadlines.
(b) Explain in detail about the optimal randomized algorithm for minimum cost spanning trees.

5 (a) How would you construct an optimal binary search tree for a set of n keys if all the keys are equally likely to be searched for? What will be the average number of comparisons in the tree if $n=2^{k}$?
(b) Write a pseudo code of the bottom-up dynamic programming algorithm for the knapsack problem.

6 (a) Generate all permutations of $\{1,2,3,4\}$ by backtracking.
(b) Apply backtracking to solve the 3 -coloring problem for the graph of.

7 (a) Explain how the traveling salesperson problem is solved by using LC branch and bound.
(b) Write the general algorithm for branch and bound.

8 Give a dynamic programming solution for the subset sum problem. Analyze the asymptotic order of your solution. Explain why this solution does not put the subset sum problem in NP-hard.
B.Tech II Year II Semester (R09) Regular \& Supplementary Examinations, April/May 2013 DESIGN AND ANALYSIS OF ALGORITHMS
(Common to CSS, IT and CSE)
Time: 3 hours
Max Marks: 70
Answer any FIVE questions
All questions carry $\underset{* * * * *}{\text { equal marks }}$
1 (a) Define an algorithm. Explain the different criteria that satisfy the algorithm.
(b) Briefly explain about asymptotic notations.

2 Explain spanning trees and minimum cost spanning trees with suitable examples.
3 (a) What are the advantages of Strassens' matrix multiplication over normal one?
(b) Present an algorithm for quick sort by using iterative method.

4 (a) Present a general method of greedy technique.
(b) Explain the greedy knap sack with suitable example.

5 (a) Solve the following instance of the ALL PAIRS shortest path problem.

(b) Discuss how to compute the cost of binary search tree.

6 Draw and explain the tree organization of the 4-queen solution space.
$7 \quad$ Solve the TSP problem for the following graph using branch and bound technique.

8 Consider the problem DNF-DISSAT which takes a Boolean formula S in disjunctive normal form (DNF) as input and asks if S is dissatisfiable that is variable of S so that if evaluates to 0 . Show that DNF-DISSAT is Np - complete.

