1

Code: 9A13501

B.Tech IV Year II Semester (R09) Regular Examinations, March/April 2013

DIGITAL CONTROL SYSTEMS

(Electronics and Instrumentation Engineering)

Time: 3 hours Max Marks: 70

Answer any FIVE questions
All questions carry equal marks

- 1 (a) What are the basic elements of discrete-data control system? Explain each of them.
 - (b) What are the advantages of discrete data control systems?
- 2 (a) Find the z-transform of (i) $f(t) = \sin \omega t$. (ii) $f(t) = t u_s(t)$.
 - (b) State and explain the following theorems of z-transform.
 - (i) Shifting theorem. (ii) Complex translation theorem.
- Solve the following difference equation using z-transform method: $C(K+2) 0.1 \ C(K+1) 0.2 \ C(K) = r(K+1) + r(K).$ where, $r(K) = u_s(K)$ for $K = 0,1,2,\ldots,C(0) = 0$ and C(1) = 0.
- 4 (a) What is the procedure for discretization of continuous time state space equations? Explain.
 - (b) State and prove various properties of state transition matrix.
- Prove that, the system described by the state equation. $X(K+1) = A \cdot X(K) + BU(K)$ is completely state controllable iff $S = [B \ AB \ A^rB...A^{n-1}B]$ is of rank 'n'.
- 6 Explain the following in detail:
 - (a) Mapping between S-plane and Z-plane.
 - (b) Primary strips.
 - (c) Complementary strips.
- 7 (a) Explain in detail different time domain specifications of digital control systems.
 - (b) Explain in detail the steady state error analysis of digital control systems using: (i) Step function as input. (ii) Ramp function as input.
- 8 For a multi input digital control system:

 $X[(K+1)T] = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} X(KT) + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} u(KT)$, design the state feedback matrix: 'G' such that the state feedback u(KT) = -G.X(KT), places the closed loop eigen values at $Z_1 = 0.1$ and $Z_2 = 0.2$.

2

B.Tech IV Year II Semester (R09) Regular Examinations, March/April 2013 DIGITAL CONTROL SYSTEMS

(Electronics and Instrumentation Engineering)

Time: 3 hours Max Marks: 70

Answer any FIVE questions All questions carry equal marks

- 1 With neat sketches explain the operation of various digital to analog converters.
- 2 Find the solution of the following difference equation using z-transforms. The difference equation is : $y(K + 2) + 0.4y(K + 1) + 0.1y(K) = -(0.5)^{K+1}$ with initial conditions: y(0) = 0 and y(1) = 0.
- Explain in detail the concept of relationship between S-plane and Z-plane. 3 (a)
 - Find the transfer function $^{\mathcal{C}(Z)}\!/_{\!R(Z)}$ for the following block diagram. (b)

- Find state transition matrix $\mathcal{O}(K)$ for the following: 4

(a)
$$X(K+1) = \begin{bmatrix} 0 & 1 \\ -0.5 & -1 \end{bmatrix} X(K)$$
.
(b) $X(K+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -0.5 & 1.5 \end{bmatrix} X(K)$.

- 5 (a) State and explain the duality property of controllability and observability.
 - Determine the controllability of the system: (b)

$$X(K+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0.04 & -0.53 & 1.4 \end{bmatrix} X(K) + \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & 1 \end{bmatrix} u(K)$$

Contd. in Page 2

2

- Find the stability of the systems represented by the characteristic equations.
 - (a) $f(z) = z^3 + 3.3z^2 + 3z + 0.8 = 0$.
 - (b) $f(z) = z^3 + z^2 + z + 1 = 0$.

Using "Bilinear Transformation" method.

- 7 Explain in detail the design of digital control systems with digital controllers through "Bilinear Transformation".
- 8 Explain the design procedure of "Full Order State Observer" for a digital control system.

3

Code: 9A13501

B.Tech IV Year II Semester (R09) Regular Examinations, March/April 2013

DIGITAL CONTROL SYSTEMS

(Electronics and Instrumentation Engineering)

Time: 3 hours Max Marks: 70

Answer any FIVE questions
All questions carry equal marks

1 (a) What are the disadvantages of digital control systems over analog control

- systems? Explain.
- (b) With neat circuit explain the operation of sample and hold circuit.
- 2 State and prove the following theorems of z-transforms.
 - (a) Initial value theorem.
 - (b) Final value theorem.
 - (c) Real convolution theorem.
- Solve the following difference equation using the z-transform method. $C(K+2) 1.5C(K+1) + C(K) = 2u_s(K)$, where, C(0) = 0 and C(1) = 1.
- Write the state equations and the output equations of the following difference equations.
 - (a) $C(K+3) + 5 \cdot C(K+2) + 3C(K+1) + 2C(K) = u(K)$
 - (b) C(K+4) + 2C(K+2) C(K+1) + C(K) = 5u(K).
- Prove that, the linear digital system described by the state equations. $X(K+1) = A \cdot X(K) + Bu(K)$

$$Y(K) = C \cdot X(K) + Du(K)$$
 is completely state observable iff,
 $\propto = [C^T \ A^T C^T \ (A^T)^T C^T \ ... \ (A^T)^{n-1} C^T]$ is of rank 'n'.

- 6 Explain the procedure to find out stability of discrete data systems using.
 - (a) Jury's stability test.
 - (b) Bilinear transformation.
- 7 Explain in detail the properties of root loci in the z-plane.
- 8 For a single input digital control system.

 $X(K+1) = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix} X(K) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(K)$, find the state feedback matrix "G" such that the eigen values of (A-BG) are at '0' and '0.3'.

4

B.Tech IV Year II Semester (R09) Regular Examinations, March/April 2013

DIGITAL CONTROL SYSTEMS

(Electronics and Instrumentation Engineering)

Time: 3 hours Max Marks: 70

> Answer any FIVE questions All questions carry equal marks

- 1 What is the role of analog to digital converter in digital control systems? Explain various types of analog to digital converters.
- 2 (a) Find the z-transform of the functions:

(i)
$$F(S) = \frac{2(s+1)}{s(s+5)}$$
 (ii) $F(S) = \frac{10}{s(s^2+s+2)}$

- Find the inverse z-transform of the function $F(z) = \frac{z(z+1)}{(z-1)(z^2-z+1)}$
- Explain in detail the concept of pulse transfer function. 3 (a)
 - Find the transfer function ${}^{C(Z)}/_{R(Z)}$ for the following block diagram. (b)

The state equation of a linear system is: 4

$$\dot{X}(t) = \begin{bmatrix} -1 & 2 \\ -1 & 0 \end{bmatrix} X(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t), \text{ with } u(t) = u(KT) = \text{constant for } KT \leq t < (K+1)T.$$

The system is discretized, resulting the following discrete data state equation: $X[(K+1)^T] = \emptyset(T) \cdot X(KT) + \theta(T)u(KT)$. Then, find the matrices: $\emptyset(T)$ and $\theta(T)$.

5 Find the controllability and observability of the system.

$$X(K+1) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} X(K) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(K).$$

$$Y(K) = \begin{bmatrix} 1 & 2 \end{bmatrix} X(K).$$

Contd. in Page 2

4

- 6 Find the stability of the following systems represented by the characteristic equation.
 - (a) $F(z) = z^3 1.25z^2 1.375z 0.25 = 0$.
 - (b) $F(z) = z^3 + 3.3z^2 + 4z + 0.8 = 0.$
 - (c) $F(z) = z^4 2z^3 + z^2 2z + 1 = 0$, using "Jury's stability test".
- What is meant by "Digital PID controller"? Explain in detail the digital PID 7 controller design using different rectangular integration schemes.
- 8 Explain the design procedure of "Reduced Order Observer" for a digital control system.

