B.Tech IV Year I Semester (R09) Supplementary Examinations, May 2013

DIGITAL SIGNAL PROCESSING
(Electrical and Electronics Engineering)
Time: 3 hours
Max Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 Check for causality and stability of following systems:
(i) $y(n)=x(n)+x(n-1)+x(n-2)$.
(ii) $y(n)-2 y(n-1)=x(n)$.

2 Determine the circular convolution of the following sequences and compare the results with linear convolution.

$$
\begin{aligned}
& x(n)=\{1,1,1,1,-1,-1,-1,-1\} . \\
& h(n)=\{0,1,2,3,4,3,2,1\} .
\end{aligned}
$$

3 Given the sequences $x_{1}(n)$ and $x_{2}(n)$ below, compute the circular convolution using DIFFFT algorithm.

$$
x_{1}(n)=\{2,1,1,2\} \quad x_{2}(n)=\{1,-1,-1,3\}
$$

4 State and prove following properties of z-transform:
(i) Time reversal.
(ii) Time convolution.
(iii) Differentiation in z-domain.

5 Convert the following analog filter transfer function using backward difference method and impulse invariant method.

$$
H(s)=1 /(s+2)(s+4)
$$

6 A low pass filter has the desired frequency response as given by:

$$
\begin{array}{rlrl}
\mathrm{H}_{\mathrm{d}}\left(\mathrm{e}^{\mathrm{j} \omega}\right) & =\mathrm{e}^{-\mathrm{j} \omega} & & -\pi / 4 \leq \omega \leq \pi / 4 \\
& =1 & \pi / 4 \leq|\omega| \leq \pi
\end{array}
$$

Determine the filter coefficients $h d(n)$ if the window function is used is

$$
\begin{array}{rlrl}
\mathrm{w}(\mathrm{n}) & =1 & 0 \leq \omega \leq 5 \\
& =0 & & \text { otherwise }
\end{array}
$$

Also determine the frequency response $\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)$ of the designed filter.

7 The spectrum of a signal $x(\mathrm{n})$ is symmetrical triangular pulse with amplitude of ' 2 ' and frequency boundaries are -0.25 to 0.25 . Sketch the spectrum and sketch spectrums of:
(i) The zero interpolated signal $\mathrm{y}(\mathrm{n})=\mathrm{x}(\mathrm{n} / 2)$.
(ii) The decimated signal $d(n)=x(2 n)$.
(iii) The signal $\mathrm{g}(\mathrm{n})$ that equals to $\mathrm{x}(\mathrm{n})$ for even n , and zero for odd n .

8 With the help of block diagram, explain about signal compression system

