www.FirstRanker.com || www.FirstRanker.com ||

Time: 3 hours

II B. Tech II Semester Supplementary Examinations April/May – 2013 ELECTRO MAGNETIC WAVES AND TRANSMISSION LINES (Electronics and Communications Engineering)

	10	• .•	r ·	• \
(Hlectronics	and Comm	unicatione	Hngine	ring
(LICCHOINCS)	and Comm	unications	LIEIIC	JIII27
(0	- 0)

Max. Marks: 80

Answer any **FIVE** Questions All Questions carry **Equal** Marks Use of Smith **Chart** Permitted.

- 1. a) State and explain Coulomb's law
 - b) The area between the circles $x^2 + y^2 = a^2$ and $x^2 + y^2 = b^2$ with b>a, is uniformly charged with a density ρ_s (C/m2). Find the force acting on a charge q placed at (0,0,z).
- 2. a) State and prove Amphere's circuital law. b) In the region $0 < \rho \le 0.5$ m, in cylindrical coordinates, J = 4.5 exp (-2 ρ) \overline{z} (A/m²) and J = 0 elsewhere. Find H, everywhere due to this current distribution.
- 3. a) Write Maxwell's equation in integral as well as differential forms.
 - b) If $\sigma=0$, $\varepsilon=2.5 \varepsilon_0$ and $\mu=\mu_0$, determine whether or not the following pairs of fields satisfy Maxwell's equation.

 $\bar{E} = 2y A_y; H=5x A_x$ $\bar{E}=100 \sin (6X10^7 t) \sin A_y$ $H= -0.1328 \cos (6X10^7 t) \cos A_x$

- 4. a) Derive wave equations in \overline{E} and \overline{H} for free space conditions.
 - b) A plane wave is propagating in a medium having the properties $\mu_r = 4$, $\varepsilon_r = 36$, $\sigma = 1$ s/m and the $\mathbf{E} = 100e^{-az}\cos(10^8 t-\beta z)a_x$ V/m, determine the associated magnetic field.
- 5. a) Derive the standing wave equation when a EM wave is incident normally a perfect conductor.
 - b) In free space E=50 cos (ω t- β z) A_z(V/m). Find the average power crossing a circular area of radius 2.5m in the plane z= constant.
- 6. a) Write short notes on the attenuation in parallel plane waveguides.
 - b) Derive the following expressions.

i)
$$\frac{1}{\lambda^2} = \frac{1}{\lambda_g^2} + \frac{1}{\lambda_c^2}$$
 $\lambda_c = 2a$ (a is the distance between parallel planes)

- 7. a) Derive an expression for input impedance at any point in a transmission line.b) Derive the secondary constants for a low loss transmission line.
- 8. a) Write short notes on the applications of smith chart.
 - b) The input impedance of a short-circuited lossy transmission line of length 2m and characteristic impedance 75Ω is $45+j225\Omega$.
 - i) Find α and β of the line.
 - ii) Determine the input impedance if the short circuit is replaced by a Z_L =67.5-j4.5 Ω

1 of 1

|"|'||'|"|"|

II B. Tech II Semester Supplementary Examinations April/May – 2013 ELECTRO MAGNETIC WAVES AND TRANSMISSION LINES (Electronics and Communications Engineering)

Time: 3 hours

(Electronics and Communications Engineering)

Max. Marks: 80

Answer any **FIVE** Questions All Questions carry **Equal** Marks Use of Smith **Chart** Permitted.

- 1. a) Derive the expression for Electric field (E) due to a line charge.
 - b) An infinitely long uniform line charge is located at y=3, z=5 and ρ_L = 30nC/m. Find E at the origin.
- 2. a) Define magnetic flux and flux density.
 - b) Find the magnetic flux density and H at a point 'P' due to a straight conductor carrying current I.
- 3. a) What is inconsistency associated with Amphere's law? How is it overcome?
 - b) Show that the displacement current in the dielectric of parallel-plate capacitor is equal to the conductor current in its leads.
- 4. a) Define uniform plane wave? Derive the corresponding mathematical expressions for it.b) Derive the expressions for α and β in a good conductor?
- 5. a) How to differentiate conductors and Insulators?
 - b) Derive the wave equation for loss less medium and prove that velocity of EM wave is equal to velocity of light in free space.
- 6. a) Why TEM modes are not possible in hollow rectangular waveguides. Prove it?
 - b) A TE₁₀ wave at 10 GHz propagates in a rectangular waveguide of (1.5cm X0.6cm) dimensions filled with medium characterized by $\mu_r=1$, $\epsilon_r=2.25$. Determine guided wavelength and wave impedance.
- 7. a) Derive an expression for input impedance at any point in a transmission line.b) Derive the secondary constants for a low loss transmission line.
- 8. a) Discuss the stub matching techniques of impedance matching.
 - b) A lossless transmission line of length 0.434λ and $Z_0=100\Omega$ is terminated in an impedance 260+j180 Ω . Find i) VSWR ii) Reflection Coefficient iii) Input impedance iv) location of voltage maximum on the line.

1 of 1

|"|'||'|"|"|"|

www.FirstRanker.com || www.FirstRa

II B. Tech II Semester Supplementary Examinations April/May – 2013 ELECTRO MAGNETIC WAVES AND TRANSMISSION LINES (Electronics and Communications Engineering)

Time: 3 hours

(Electronics and Communications Engineering)

Max. Marks: 80

Answer any **FIVE** Questions All Questions carry **Equal** Marks Use of Smith **Chart** Permitted.

- 1. a) Derive Possion's and Laplace's equations from fundamentals.
 - b) An infinitely long uniform line charge is located at y=3, z=5. If ρ_L =30nC/m, find field intensity \bar{E} at i) origin ii) P (5,6,1).
- 2. a) State and explain Lorentz's force equation.
 - b) A conductor of length 2.5 m located at z=0, x=48 m carries a current of 12 A in $-a_y^-$ direction. Find the uniform 'B' in the region if the force on the conductor is 1.2×10^{-2} N in the direction $(-\bar{a}_x + \bar{a}_z)/\sqrt{2}$
- 3. a) State and prove Maxwell's equations concerned to magnetic fields. Give their significance.b) Obtain the expression for continuity of current equation.
- 4. a) Derive the relation $E/H = \eta$.
 - b) A uniform plane wave propagating in a medium has $E = 2e^{-\alpha z} \sin(10^8 t \beta z) \bar{a}_y$ V/m. If medium is characterized by $\epsilon_r = 1$, $\mu_r = 20$, $\sigma = 3$ mhos /m, Find α , β .
- 5. a) Using Poynting theorem, show that the power flow along a coaxial cable is the product of Voltage and Current.
 - b) Derive expressions for the reflection coefficient when plane waves with perpendicular polarization are incident at an angle on a boundary between two dielectric media.
- 6. a) Define the terms cut-off wavelength, phase velocity, group velocity and guide wavelength.b) Derive an expression for the attenuation factor 'α' for the TE wave.
- 7. a) Derive the expression for propagation constant of infinite transmission line.
 - b) The characteristic impedance of 1 KM long line is 100Ω and is terminated in 200 Ω . It is fed with 10V having a source resistance of 50 Ω at ω =0.3 rad/sec. Find the input voltage and current.
- 8. a) Sketch input impedance versus line length for short and open circuited lines with $0 < l < \lambda$.
 - b) $Z_{0C} = 900 \angle -30^{\circ}$ and $Z_{SC} = 400 \angle -10^{\circ}$. Calculate Z_0 and γ of a 12km long line.

1 of 1

|"|'||'|"|"|"|

www.FirstRanker.com || www.FirstRa

II B. Tech II Semester Supplementary Examinations April/May – 2013 ELECTRO MAGNETIC WAVES AND TRANSMISSION LINES (Electronics and Communications Engineering)

Time: 3 hours

(Electronics and Communications Engineering)

Max. Marks: 80

Answer any **FIVE** Questions All Questions carry **Equal** Marks Use of Smith **Chart** Permitted.

- 1. a) Define electric potential and obtain expression for electric potential due to n-point charges.
 - b) Find electric flux density at (0,4,3) when a point charge of 30nC is located at the origin and plane y=3 carries charge 10nC/m².
- 2. a) Derive the expression for inductance per unit length for a solid wire of radius 'a'.
 - b) Given that H=-2 a_x +6 a_y +4 a_z A/m; in the region y-x ≤ 0 where μ =5 μ_0 . Calculate magnetic flux density.
- 3. a) Express Maxwell's equations in dielectric medium in point and integral forms along with word statements.
 - b) State Faraday's laws and derive expression for induced EMF.
- 4. a) Derive wave equation for source free regions.b) Derive attenuation constant and phase constant for the plane wave in conducting medium.
- 5. a) In free-space the intensity of the field is $\bar{E}cos (\omega t \beta z)\bar{a}_z V/m$. Find the average power crossing a circular area of radius 2.5m in the plane z = constant.
 - b) Evaluate the reflection and transmission coefficients for the case an EM wave in air incident normally upon the copper sheet of frequency 1 MHz. Given $\mu_0=\mu_1=\mu_2$, $\epsilon_1=\epsilon_2=\epsilon_0$, $\sigma_1=0$, $\sigma_2=5.8 \times 10^{-7}$ /m.
- Find Z₀, V_p, V_g for the dominant mode propagating in rectangular wave guide with a=2.2cm, b=1 cm. Frequency of propagation is 10 GHz. Determine any other modes that are propagating in the waveguide.
- a) Derive the condition for distortionless transmission line.
 b) Sketch input impedance versus line length for shorted and open circuited line with 0<l<λ.
- 8. A 50 ohm line is terminated with a load $Z_L=75+j65$ ohms. Determine the location to insert a short circuited stub and its length required to match the load to the line. The frequency of operation is 1 GHz. Use Smith chart if necessary.

1 of 1

|"|'||'|"|"|"|

www.FirstRanker.com || www.FirstRa