Code No: V0424 (R07)

II B. Tech II Semester Supplementary Examinations Dec – 2012 ELECTRO MAGNETIC WAVES AND TRANSMISSION LINES

(Electronics and Communications Engineering)

Time: 3 hours Max. Marks: 80

Answer any **FIVE** Questions All Questions carry **Equal** Marks

- 1. a) Derive an expression for the electric field intensity due to a finite length line charge along the Z-axis at an arbitrary point Q(x, y, z).
 - b) Two uniform line charges of density 8nC/m are located in a plane with y=0 at x=±8m.Find the E- field at a point P (5, 4, 8) m. (8M+8M)
- 2. a) State Ampere's circuital law. Specify the conditions to be met for determining magnetic field strength H, based on Ampere's circuital law.
 - b) Given $E=E_m Sin(\omega t-\beta z)$ a_v in free space. Find the D, B and H. (8M+8M)
- 3. a) Derive the boundary conditions for the tangential and normal components of Electrostatic fields at the boundary between two perfect dielectrics.
 - b) In a non magnetic medium $E=50 \text{ Cos } (10^9 \text{t-8x}) \text{ a}_y + 40 \text{ Sin } (10^9 \text{t-8x}) \text{ a}_z \text{ V/m}$. Find the dielectric constant ε_r and corresponding H (8M+8M)
- 4. a) Derive the expression for the phase shift constant and attenuation constant of a plane wave propagation in a lossy dielectric medium.
 - b) For a uniform plane wave in space $\lambda=12$ cm.In a loss less material of unknown Characteristics $\lambda=8$ cm. In this material E=50V/m, H=0.1 A/m. Find f, μ_r and ϵ_r . (6M+10M)
- 5. a) Derive an expression for reflectioncoefficient when a wave is incident on a dielectric obliquely with parallel polarization.
 - b) In a plane wave travelling in a free space has an average pointing vector of 5 watts/m². Find the average energy density. (10M+6M)
- 6. a) Derive the field components for TE wave between parallel plates
 - b) A parallel plate wave guide made of two perfectly conducting infinite planes spaced 3 cm apart in air operates at frequency of 10GHz. Find the maximum time, average power that can be propagated per unit width of guide for TE1, TM1 modes. (10M+6M)
- 7. a) Derive the expression for the input impedance of a loss less line. Hence evaluate Z_{SC} and Z_{OC} and Sketch their variation with line length.
 - b) A lossy cable which has $R=2.25\Omega/m$, $L=1.0\mu H/m$, C=1pF/m, and G=0 operates at f=0.5GHz. Find out the attenuation constant of the line (10M+6M)
- 8. a) Discuss about single and double stub matching.
 - b) Explain the principle of impedance matching with quarter wave transformer (8M+8M)

Code No: V0424

R07

SET - 2

II B. Tech II Semester Supplementary Examinations Dec – 2012 ELECTRO MAGNETIC WAVES AND TRANSMISSION LINES

(Electronics and Communications Engineering)

Time: 3 hours Max. Marks: 80

Answer any **FIVE** Questions All Questions carry **Equal** Marks

- 1. a) Show that the electric field intensity due to an infinite sheet of charge is independent of the distance of the point from the sheet.
 - b) A Parallel plate capacitance has 500mm side plates of square shaped separated by 10mm. A Sulphur slab of 6mm thickness with ε_r =4 is kept on the lower plate. Find the capacitance of the setup. If a voltage of 100Volts is applied across the capacitor; calculate the voltages at both the regions of the capacitor between the plates. (8M+8M)
- 2. a) Define Lorentz force equation and explain its significance.
 - b) A circular loop of 3 units radius is centered at origin in z=0 plane and carries a DC current of 10mA, along Φ-direction. Find the magnetic flux density at (0, 0, ±4) (8M+8M)
- 3. a) Derive the Maxwell's two equations in integral form and differential form for time varying fields.
 - b) In a medium characterized by σ =0, μ = μ_0 , ϵ = ϵ_0 and E=20 Sin (10⁸t- β z) a_y V/m. Calculate β and H using Maxwell's equations. (8M+8M)
- 4. a) For a wave propagating in good dielectrics, derive the expression for intrinsic impedance of a good dielectric.
 - b)Determine the phase velocity of propagation, attenuation constant, phase constant and intrinsic impedance for a forward travelling wave in a large block of copper at 1MHz $(\sigma=5.8\times10^7,\epsilon_r=\mu_r=1)$. Determine the distance that the wave must travel to be attenuated by a factor of 100 (40 dB) (8M+8M)
- 5. a) Explain the significance of Poynting theorem and Pointing Vector.
 - b) A perpendicularly polarized wave in incident at an angle of θ_i =15 0 .It is propagating from medium 1 to medium 2.Medium 1 is defined by ϵ_{r1} = 8.5, μ_{r1} = 1, and σ_1 =0 and medium 2 is free space. If E_i =1.0mV/m. Determine E_r , H_i , H_r , E_t and H_t . (6M+10M)
- 6. a) Explain the significance of TEM waves in a parallel plane wave guide, and derive an expression for the attenuation factor for TEM waves.
 - b) If a wave of 6 GHz is propagation between two parallel conducting plates separated by 30mm .Find the cutoff wave length ,guide wavelength for TE₁ mode (10M+6M)
- 7. a) Draw the equivalent circuit of a two wire transmission line.
 - b) List out the applications of a transmission lines.
 - c) Define input impedance of a transmission line and derive the expression for it.

(4M+4M+8M)

- 8. a) Explain the significance and utility of $\lambda/8$, $\lambda/4$ and $\lambda/2$ lines.
 - b) A low transmission line of 100Ω characteristic impedance is converted to a load of 400Ω . Calculate the reflection coefficient and standing wave ratio. (8M+8M)

Code No: V0424

R07

SET - 3

II B. Tech II Semester Supplementary Examinations Dec – 2012 ELECTRO MAGNETIC WAVES AND TRANSMISSION LINES

(Electronics and Communications Engineering)

Time: 3 hours Max. Marks: 80

Answer any **FIVE** Questions All Questions carry **Equal** Marks

- 1. a) Derive an expressions for the field strength due to a volume of uniform charge density an arbitrary point $P(r, \theta, \emptyset)$.
 - b) A circular ring of radius 'a' carries uniform change $\rho_L C/m$ and is in the xy-plane. Find the electric field at point (0, 0, 2) along the axis. (8M+8M)
- 2. a) Define and explain the Biot- Savart's law. Hence obtain the field due to a straight current carrying filamentary conductor of finite length
 - b) In free space **D**=5.0 Sin (10t- β z) $\mathbf{a}_{\mathbf{x}}$. Find the B using Maxwell's equation (10M+6M)
- 3. a) Explain the concept of displacement current introduced by Maxwell to account for the production of magnetic fields in the empty space.
 - b) A parallel plate capacitor with a plate area of 5cm^2 and plate separation of 3mm has a voltage $50 \, \text{Sin} \, 10^3 \text{tV}$ applied to its plates. Calculate the displacement current assuming $\epsilon = 2\epsilon_0$.

(8M+8M)

- 4. a) Explain the terms:
 - i) Linear polarization ii) Circular polarization iii) Elliptical polarization
 - b) A 300MHz uniform plane wave propagates through fresh water for which σ =0, μ r=1 and ϵ r=78.Calculate i) the attenuation constant ii)the phase constant iii) the wave length iv) Intrinsic impedance. (6M+10M)
- 5. a) Derive the expression for the resultant Electric field and resultant magnetic field when a wave incidents normally on a perfect conductors.
 - b) An EM wave in free space is incident normally on a dielectric whose ε_r =5.0,Find the reflection and transmission coefficients. (8M+8M)
- 6. a) What are the field components for TM waves? Derive them and draw the sketches for TM₁₀ mode
 - b) Explain the factors on which cutoff frequency of parallel plate wave guide depend.

(10M+6M)

- 7. a) Write a short notes on
 - i)Lossless Transmission lines.
- ii) Distortion less line
- b) A transmission line operating at 500MHz has Z_0 =80 Ohms, α =0.04Np/m, β =1.5rad/m. Find the line parameters R, L, G, and C (6M+10M)
- 8. a) Derive a relation between reflection coefficient and characteristic impedance.
 - b) A 100Ω loss less line connects a signal of 100 KHz to load of $140~\Omega$. The load power is 100 mW.calculate i)Voltage reflection Coefficient ii) VSWR iii)Position of V_{max} , I_{max} , V_{min} and I_{min} (6M+10M)

Code No: V0424 (R07)

II B. Tech II Semester Supplementary Examinations Dec – 2012 ELECTRO MAGNETIC WAVES AND TRANSMISSION LINES

(Electronics and Communications Engineering)

Time: 3 hours Max. Marks: 80

Answer any **FIVE** Questions All Questions carry **Equal** Marks

1. a) State and prove Gauss's law .list the limitations of Gauss's law

- b) The non uniform field $\mathbf{E} = y\mathbf{a}_x + x\mathbf{a}_y + 2\mathbf{a}_z$, determine the work expended in carrying 2C from B(1,0,1) to A(0.8,0.6,1) along the shorter arc of the circle, $x^2 + y^2 = 1,z = 1$ (8M+8M)
- 2. a) Derive the Maxwell's two equations for magneto static fields in point and integral forms. Give their word statements and explain their significance.
 - b) Find the vector magnetic field intensity in Cartesian coordinates P (1.8, 2, 5. 3) caused by a current filament of 24A in a_z direction along Z-axis and extending from z=0 to z=6.

(8M+8M)

- 3. a) Derive the equation of continuity for the time varying fields.
 - b) In a medium of μ_r = 2 Find E,B and displacement current if \mathbf{H} =25Sin(2X10⁸t+6x) $\mathbf{a_y}$ mA/m. (6M+10M)
- 4. a) Define uniform plane wave. Prove that uniform plane wave does not have field components in the direction of propagation.
 - b) Find the depth of penetration S of an EM wave in copper at f=60Hz and f=100MHz.For Copper σ =5.8*10⁷, μ_r =1, and ϵ_r =1. (8M+8M)
- 5. a) Obtain the expression for surface impendence of conductors in terms of skin depth
 - b) A plane wave with E=2.0V/m and has a frequency of 300MHz is moving in free space impinging on thick copper sheet located to the direction of the propagation .Find i) E and H at the plane surface ii) Depth of penetration iii) the surface impedance (6M+10M)
- 6. a) Explain and sketch the nature of variations of attenuation with frequency in parallel plate waveguide for TE, TM and TEM waves.
 - b) For a parallel plane waveguide of 3Cm separation, determine all the propagation characteristics for a signal at 10GHz for TE_{10} waves (10M+6M)
- 7. a) Derive the relationship between secondary constants and primary constants of a transmission line
 - b) Show that a line will be distortion free if CR=LG. (8M+8M)
- 8. Write a detailed notes on
 - i) Stub matching
- ii) Smith chart and its applications.

(8M + 8M)