II B. Tech II Semester, Supplementary Examinations, Dec - 2012
 FORMAL LANGUAGES AND AUTOMATA THEORY

(Computer Science and Engineering)
Time: 3 hours
Max. Marks: 75
Answer any FIVE Questions
All Questions carry Equal Marks

1. a) Construct a DFA that accepts an identifier of a ' C ' programming language.
b) Differentiate between NFA and DFA?
(7M+8M)
2. a) Design a DFA that accepts the language over $\sum=\{0,1\}$ of all strings that contain neither the sub-string 00 nor the sub-string 11 .
b) Construct a minimal state finite automaton to the following state diagram:

3. a) Find the regular expression for the following finite automaton:

b) Show that the simplified regular expression recognized by the following DFA is the set of all strings of a's and b's that end with letter a.
($7 \mathrm{M}+8 \mathrm{M}$)

1 of 2
4. a) Consider the following context free grammar:

$$
\mathbf{E} \rightarrow \mathbf{I}|\mathbf{E}+\mathbf{E}| \mathbf{E}^{*} \mathbf{E} \mid(\mathbf{E})
$$

$$
\mathbf{I} \rightarrow \mathbf{a}|\mathbf{b}| \mathbf{I a}|\mathbf{I b}| \mathrm{Io} \mid \mathbf{I 1}
$$

Find the leftmost derivation, rightmost derivation, and parse tree for the string: $\mathrm{a}^{*}(\mathrm{a}+\mathrm{b} 00)$.
b) Write a context free grammar for the while statement in ' C ' language.
(7M+8M)
5. a) Consider the following context free grammar, G:

$$
\begin{aligned}
& S \rightarrow A B A C \\
& A \rightarrow \mathbf{A A} \mid \in \\
& \mathbf{B} \rightarrow \mathbf{b B} \mid \in \\
& C \rightarrow \mathbf{d}
\end{aligned}
$$

Convert the \mathbf{G} equivalent to \mathbf{G}^{\prime} that has: no null productions, and no unit productions one after the other.
b) Find the Greibach normal form of the following grammar:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{AA} \mid \mathrm{x} \\
& \mathrm{~A} \rightarrow \mathrm{SS} \mid \mathrm{y}
\end{aligned}
$$

(7M+8M)
6. Let $\mathrm{M}=\left(\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\},\{\mathrm{a}, \mathrm{b}\},\left\{\mathrm{X}, \mathrm{Z}_{0}\right\}, \delta, \mathrm{q}_{0}, \mathrm{Z}_{0, \phi}\right)$ be a push down automata (PDA) and δ is defined by:

$$
\begin{array}{lll}
\delta\left(\mathrm{q}_{0,}, \mathrm{~b}, \mathrm{Z}_{0}\right)=\left\{\left(\mathrm{q}_{0, \mathrm{X}} \mathrm{Z}_{0}\right\}\right\} & \delta\left(\mathrm{q}_{0, \varepsilon}^{,} \mathrm{Z}_{0}\right)=\left\{\left(\mathrm{q}_{0, \mathrm{\varepsilon})\}}\right.\right. & \delta\left(\mathrm{q}_{0}, \mathrm{~b}, \mathrm{X}_{)}=\left\{\left(\mathrm{q}_{0, \mathrm{XX})\}}\right.\right.\right. \\
\delta\left(\mathrm{q}_{1}, \mathrm{~b}, \mathrm{X}_{)}=\left\{\left(\mathrm{q}_{1, \mathrm{\varepsilon}}\right)\right\}\right. & \delta\left(\mathrm{q}_{0}, \mathrm{a}, \mathrm{X}\right)=\left\{\left(\mathrm{q}_{1, \mathrm{X})\}}\right.\right. & \delta\left(\mathrm{q}_{1}, \mathrm{a}, \mathrm{Z}_{0}\right)=\left\{\left(\mathrm{q}_{0}, \mathrm{Z}_{0}\right)\right\}
\end{array}
$$

i) Find the language accepted by the PDA, M by empty store.
ii) Construct a context free grammar (CFG), G that accepts null store, $\mathrm{N}(\mathrm{M})$
(7M+8M)
7. a) Explain, briefly, about the different types of Turing Machines.
b) Design a Turing Machine (TM) that accepts the language, $L=\left\{0^{n} 1^{n} 0^{n} \mid n \geq 1\right\}$
(7M+8M)
8. a) State and explain the undecidability of post correspondence problem
b) What do you meant by decidable and undecidable problems? Explain, in detail, P and NP problems with examples.
($8 \mathrm{M}+7 \mathrm{M}$)

II B. Tech II Semester, Supplementary Examinations, Dec - 2012 FORMAL LANGUAGES AND AUTOMATA THEORY

(Computer Science and Engineering)
Time: 3 hours
Max. Marks: 75
Answer any FIVE Questions
All Questions carry Equal Marks

1. a) Give a finite state diagram that accepts all the floating-point numbers.
b) Design NFA to accept strings with a's and b's such that the string end with 'ab'
(7M+8M)
2. a) Construct a minimal state Finite Automaton to the following state diagram:

b) Design a Moore machine and Mealy machine that accepts strings over $\sum=\{0,1\}$ where, if the input ends in 001 , output a A ; if the input ends in 100 , output a B ; else output a C .
(7M+8M)
3. a) Construct an NFA and DFA for the Regular Expression: $(0+1) *(00+11) 110$.
b) Find the regular expression for the following finite automaton:
(7M+8M)

4. a) Give the context free grammar that generates the set $\left\{0^{n} 1^{n} \mid n \geq 1\right\}$
b) Consider the following context free grammar: $\mathrm{E} \rightarrow+\mathrm{EE}|* \mathrm{EE}|-\mathrm{EE}|\mathrm{x}| \mathrm{y}$

Find the leftmost derivation, rightmost derivation, and parse tree for the string: + * - x y x y
($8 \mathrm{M}+7 \mathrm{M}$)
5. a) Convert and reduce the following grammar such that there are no UNIT productions.
$\mathrm{S} \rightarrow \mathrm{AA}$
$\mathrm{A} \rightarrow \mathrm{B} \mid \mathrm{BB}$
$\mathrm{B} \rightarrow \mathrm{abB}|\mathrm{b}| \mathrm{bb}$
b) Find the Greibach normal form of the following grammar:
(7M+8M)

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{E}+\mathbf{T} \mid \mathbf{T} \\
& \mathbf{T} \rightarrow \mathbf{\mathbf { T } ^ { * }} \mathbf{F} \mid \mathbf{F} \\
& \mathbf{F} \rightarrow(\mathbf{E}) \mid \mathbf{a}
\end{aligned}
$$

6. a) Construct the equivalent grammar for the PDA

$$
M=\left(\left\{q_{0}, q_{1}\right\},\{0,1\},\left\{R, Z_{0}\right\}, \delta, q_{0}, Z_{0}, \Phi\right) \text { and } \delta \text { is given by }
$$

$\delta\left(q_{0}, 0, Z_{0}\right)=\left(q_{0}, R Z_{0}\right)$
$\delta\left(q_{0}, 0, R\right)=\left(q_{0}, R R\right)$
$\delta\left(q_{0}, 1, R\right)=\left(q_{1}, R\right)$
$\delta\left(q_{1}, 1, R\right)=\left(q_{1}, R\right)$
$\delta\left(q_{1}, 0, R\right)=\left(q_{1}, \in\right)$
$\delta\left(q_{1}, \in, Z_{0}\right)=\left(q_{1}, \in\right)$
b) Design a PDA for a language $L=\left\{w \mid w \in(0+1)^{*}\right.$ and number of 0 ' $\mathrm{s}<$ number of 1 's $\}$ by final state.
(7M+8M)
7. a) Consider following transition table (States versus Tape symbols) of a Turing Machine, M:

	0	1	B
$\rightarrow \mathrm{q}_{1}$	$\mathrm{q}_{1}, \mathrm{O}, \mathrm{R}$	-	$\mathrm{q}_{2}, 1, \mathrm{~L}$
q_{2}	$\mathrm{q}_{2}, \mathrm{O}, \mathrm{L}$	$\mathrm{q}_{2}, 1, \mathrm{~L}$	$\mathrm{q}_{3}, \mathrm{~B}, \mathrm{R}$
q_{3}	$\mathrm{q}_{4}, \mathrm{~B}, \mathrm{R}$	$\mathrm{q}_{5}, \mathrm{~B}, \mathrm{R}$	-
q_{4}	$\mathrm{q}_{4}, 0, \mathrm{R}$	$\mathrm{q}_{4}, 1, \mathrm{R}$	$\mathrm{q}_{5}, 0, \mathrm{R}$
q_{5}	-	-	$\mathrm{q}_{2}, 0, \mathrm{~L}$

Find the computation sequence of the input string: 00B
b) Design a Turing Machine, M that accepts e set of strings with an equal number of 0's and 1's
(7M+8M)
8. a) What is a universal Turing machine? Explain Turing reducibility.
b) Construct the $\operatorname{LR}(0)$ parser for the following grammar:
$\mathbf{E}^{\prime} \rightarrow \mathbf{E}$
$\mathbf{E} \rightarrow \mathbf{E}+\mathbf{n} \mid \mathbf{n}$

II B. Tech II Semester, Supplementary Examinations, Dec - 2012
 FORMAL LANGUAGES AND AUTOMATA THEORY

(Computer Science and Engineering)
Time: 3 hours
Max. Marks: 75
Answer any FIVE Questions
All Questions carry Equal Marks

1. a) Construct NFA in which double 1's followed by double 0 's
b) Design FA that accepts set of all string with three consecutive 0 's over $\sum=\{0,1\}$.
(7M+8M)
2. a) Design a DFA over $\sum=\{0,1\}$ accepting all strings of even number of decimal numbers in binary.
b) Construct a DFA equivalent to the following NFA diagram:

3. a) When are two regular expressions said to be equivalent? Obtain the regular expression represented by the regular set: $\{0,1,00,01,000,001,0000,0001, \ldots\}$
b) Prove the following regular expression identities:
i) $(\epsilon+0)(\epsilon+0) *=0 * \quad$ ii) $1+(\epsilon+0)(\epsilon+0)^{*} 1=0^{*} 1$
iii) $\in+1^{*}(011)^{*}\left(1^{*}(011)^{*}\right)^{*}=(1+011)^{*}$
(7M+8M)
4. a) For the following grammar give the leftmost and rightmost derivation for the string ' 00101 '.

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{~A} \mid \mathrm{B} \\
& \mathrm{~A} \rightarrow 0 \mathrm{~A} \mid \in \\
& \mathrm{B} \rightarrow 0 \mathrm{~B}|\mathrm{~B}| \in
\end{aligned}
$$

b) Construct the right linear grammar and left linear grammar for the language $(0+1) * 00(0+1)^{*}$
5. a) Consider the following grammar G :
$S \rightarrow$ ASB $\mid \in$
$\mathrm{A} \rightarrow$ aAS \mid a
$\mathrm{B} \rightarrow$ SbS $|\mathrm{A}| \mathbf{b b}$
Find an equivalent grammar that has: no null productions, and no unit productions one after the other.
b) Convert the given CFG into GNF

$$
\begin{align*}
& \mathrm{S} \rightarrow \mathrm{CA} \\
& \mathrm{~A} \rightarrow \mathrm{a} \\
& \mathrm{C} \rightarrow \mathrm{aB} \mid \mathrm{b} \tag{7M+8M}
\end{align*}
$$

6. a) Design a PDA that accepts a string of a well formed parenthesis. Consider parenthesis is as (), [], \{ \}.
b) Construct PDA equivalent to the following CFG

$$
\begin{aligned}
& \mathrm{S} \rightarrow 0 \mathrm{~A} \\
& \mathrm{~A} \rightarrow 0 \mathrm{ABC}|1 \mathrm{~B}| 0 \\
& \mathrm{~B} \rightarrow 1 \\
& \mathrm{C} \rightarrow 2
\end{aligned}
$$

7. a) Consider the following transition table (States versus Tape symbols) of a Turing Machine, M:

	(**)	B
q1	ql, CR	G1, ${ }^{*}$, R	q2, **, L	C13, B, L
Cl	$\mathrm{ql}, *, \mathrm{R}$	$\mathrm{Cl}_{2}{ }^{\text {, }}$,, L	42,), L	Halt
C13	Halt	c13, ${ }^{*}$, L	93,), L	Halt

If the initial Instantaneous Description (ID) is: q_{1} (() B, then what is the final ID? b) Design Turing Machine over $\sum=\{1\}$ to accept the language $\mathrm{L}=\{1 \mathrm{~m} / \mathrm{m}$ is odd $\}$
8. a) What is a modified PCP? Explain with some suitable example.
b) Explain, in detail, NP Complete and NP hard problems with examples.

II B. Tech II Semester, Supplementary Examinations, Dec - 2012 FORMAL LANGUAGES AND AUTOMATA THEORY

(Computer Science and Engineering)
Time: 3 hours
Max. Marks: 75
Answer any FIVE Questions
All Questions carry Equal Marks

1. a) Give a finite state diagram that accepts all the floating-point numbers.
b) Design NFA which accepts the language containing either ' 01 ' or ' 10 ' over $\Sigma=\{0,1\}$.
(7M+8M)
2. a) Design a DFA that accepts the language over the alphabet, $\Sigma=\{0,1,2\}$ where the decimal equivalent of the language is divisible by 3 .
b) Design a Moore machine and Mealy machine that accepts strings over $\sum=\{0,1\}$ where, if the input ends in 001 , output a A ; if the input ends in 100 , output a B; else output a C.
(7M+8M)
3. a) Show that $\mathrm{L}=\left\{0^{\mathrm{i}} 1^{\mathrm{j}} \operatorname{Igcd}(\mathrm{i}, \mathrm{j})=1\right\}$ is not regular
b) Show that the following regular expression identities are equivalent:
(7M+8M)
i) $r^{+}=r^{*} r^{+}$
ii) $(\mathrm{r}+\mathrm{s})^{*}=\left(\mathrm{r}+\mathrm{s}^{*}\right)^{*}$
4. a) Construct a context free grammar for generating the balanced parentheses, like (), [], [() ()], ([]), etc. and find the moves of the grammar to derive the string: ([()] ()) b) Draw the parse tree for the production grammar: $\mathrm{S} \rightarrow(\mathrm{S})|\mathrm{S} \supset \mathrm{S}| \sim \mathrm{S}|\mathrm{i}| \mathrm{j}$, generating the symbolic formula: $(\sim \sim \mathrm{i} \supset(\mathrm{i} \supset \sim \sim \mathrm{j}))$.
(7M+8M)
5. a) State and prove the pumping lemma for context free languages.
b) Give CFG for generating odd palindromes over the string $\{\mathrm{a}, \mathrm{b}\}$
(7M+8M)
6. a) Design a PDA that accepts a string of a well formed parenthesis. Consider parenthesis is as (), [], \{ \}.
b) Construct PDA equivalent to the following CFG

$$
\begin{align*}
& \mathrm{S} \rightarrow 0 \mathrm{~A} \\
& \mathrm{~A} \rightarrow 0 \mathrm{ABC}|1 \mathrm{~B}| 0 \\
& \mathrm{~B} \rightarrow 1 \\
& \mathrm{C} \rightarrow 2 \tag{7M+8M}
\end{align*}
$$

7. a) State and prove the Turing Machine (TM) halting problem.
b) Design a Turing Machine, M that accepts a palindrome consisting of 0 's and 1 's of any length.
($7 \mathrm{M}+8 \mathrm{M}$)
8. a) Describe in detail about halting problem of a Turing machine
b) Describe about modified Post's correspondence problem.

1 of 1

