

- a) Construct a DFA that accepts an identifier of a 'C' programming language.
 b) Differentiate between NFA and DFA? (7M+8M)
- 2. a) Design a DFA that accepts the language over $\Sigma = \{0, 1\}$ of all strings that contain neither the sub-string 00 nor the sub-string 11.
 - b) Construct a minimal state finite automaton to the following state diagram: (7M+8M)

3. a) Find the regular expression for the following finite automaton:

b) Show that the simplified regular expression recognized by the following DFA is the set of all strings of a's and b's that end with letter a. (7M+8M)

a) Consider the following context free grammar:
 E → I | E+E | E*E | (E)

 $I \rightarrow a | b | Ia | Ib | I0 | I1$

Find the leftmost derivation, rightmost derivation, and parse tree for the string: a*(a+b00). b) Write a context free grammar for the while statement in 'C' language. (7M+8M)

5. a) Consider the following context free grammar, G:

$$\begin{array}{l} \underline{S} \rightarrow \underline{ABAC} \\ \underline{A} \rightarrow \underline{aA} \mid \in \\ \underline{B} \rightarrow \underline{bB} \mid \in \\ \underline{C} \rightarrow \underline{d} \end{array}$$

Convert the **G** equivalent to **G'** that has: no null productions, and no unit productions one after the other.

b) Find the Greibach normal form of the following grammar:

$$\begin{array}{c} S \rightarrow AA \mid x \\ A \rightarrow SS \mid y \end{array}$$

(7M+8M)

6. Let $M = (\{q_0, q_1\}, \{a, b\}, \{X, Z_0\}, \delta, q_0, Z_{0, c})$ be a push down automata (PDA) and δ is defined by:

$ \underset{ \ \ }{\underbrace{\delta}} \ (q_0, b, Z_0) = \{ (\ q_0, \chi \ Z_0) \} $	$\delta \left(q_{0,\epsilon,} Z_{0} \right) = \{ (q_{0,\epsilon)} \}$	$\delta \ (q_{0,} b, X) = \{(\ q_{0, XX)} \}$
$\underset{\leftarrow}{\delta} (q_{1,}b,X) = \{(q_{1,\epsilon})\}$	$\delta \ (q_{0,} a, X) = \{(\ q_{1, X})\}$	$\delta \ (q_{1,} a, Z_{0)} = \{ (\ q_{0,} \ Z_{0}) \}$

i) Find the language accepted by the PDA, M by empty store.

```
ii) Construct a context free grammar (CFG), G that accepts null store, N(M) (7M+8M)
```

- 7. a) Explain, briefly, about the different types of Turing Machines.
 b) Design a Turing Machine (TM) that accepts the language, L = { 0ⁿ1ⁿ0ⁿ | n ≥ 1 } (7M+8M)
- 8. a) State and explain the undecidability of post correspondence problem
 b) What do you meant by decidable and undecidable problems? Explain, in detail, P and NP problems with examples. (8M+7M)

II B. Tech II Semester, Supplementary Examinations, Dec – 2012 FORMAL LANGUAGES AND AUTOMATA THEORY

(Computer Science and Engineering)

Time: 3 hours

Code No: R22055

Max. Marks: 75

Answer any **FIVE** Questions All Questions carry **Equal** Marks

- a) Give a finite state diagram that accepts all the floating-point numbers.
 b) Design NFA to accept strings with a's and b's such that the string end with 'ab' (7M+8M)
- 2. a) Construct a minimal state Finite Automaton to the following state diagram:

b) Design a Moore machine and Mealy machine that accepts strings over $\sum = \{0, 1\}$ where, if the input ends in 001, output a A; if the input ends in 100, output a B; else output a C.

(7M+8M)

a) Construct an NFA and DFA for the Regular Expression: (0 + 1)*(00 + 11) 110.
b) Find the regular expression for the following finite automaton: (7M+8M)

4. a) Give the context free grammar that generates the set {0ⁿ1ⁿ | n ≥ 1}
b) Consider the following context free grammar: E → +EE | *EE | -EE | x | y
Find the leftmost derivation, rightmost derivation, and parse tree for the string: + * - x y x y

(8M+7M)

1 of 2

 $M = (\{q_0, q_1\}, \{0, 1\}, \{R, Z_0\}, \delta, q_0, Z_0, \Phi) \text{ and } \delta \text{ is given by} \\ \delta(q_0, 0, Z_0) = (q_0, RZ_0) \\ \delta(q_0, 0, R) = (q_0, RR) \\ \delta(q_0, 1, R) = (q_1, R) \\ \delta(q_1, 1, R) = (q_1, R) \\ \delta(q_1, 0, R) = (q_1, \epsilon) \\ \delta(q_1, \epsilon, Z_0) = (q_1, \epsilon) \\ b) \text{ Design a PDA for a language } L = \{w\} w \in (0+1)^*$

b) Design a PDA for a language $L = \{w | w \in (0+1)^* \text{ and number of } 0's < \text{number of } 1's \}$ by final state. (7M+8M)

7. a) Consider following transition table (States versus Tape symbols) of a Turing Machine, M:

	0	1	В
→qı	q1, 0, R	-	q ₂ , 1, L
q2	q ₂ , 0, L	q ₂ , 1, L	q3, B, R
q3	q4, B, R	q5, B, R	-
Q4	q4, 0, R	q4, 1, R	qs, 0, R
qs	-	-	q ₂ , 0, L

Find the computation sequence of the input string: 00B

b) Design a Turing Machine, M that accepts e set of strings with an equal number of 0's and 1's (7M+8M)

8. a) What is a universal Turing machine? Explain Turing reducibility.

b) Construct the LR(0) parser for the following grammar:

$$\mathbf{E}' \rightarrow \mathbf{E}$$

 $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{n} \mid \mathbf{n}$ (7M+8M)

a) Construct NFA in which double 1's followed by double 0's
 b) Design FA that accepts set of all string with three consecutive 0's over ∑ = {0, 1}.

(7M+8M)

(7M + 8M)

- 2. a) Design a DFA over $\Sigma = \{0, 1\}$ accepting all strings of even number of decimal numbers in binary.
 - b) Construct a DFA equivalent to the following NFA diagram:

3. a) When are two regular expressions said to be equivalent? Obtain the regular expression represented by the regular set: {0, 1, 00, 01, 000, 001, 0000, 0001, ... }

b) Prove the following regular expression identities:

i)
$$(\in +0) (\in +0)^* = 0^*$$

ii) $1 + (\in +0) (\in +0)^* = 0^*$
iii) $\in +1^* (011)^* (1^* (011)^*)^* = (1 + 011)^*$ (7M+8M)

- 4. a) For the following grammar give the leftmost and rightmost derivation for the string '00101'.
 - $S \to A \mid B$ $A \to 0A \mid \in$
 - $B \to 0B \mid 1B \mid \in$

b) Construct the right linear grammar and left linear grammar for the language (0+1)*00(0+1)*

(7M+8M)

1 of 2

www.FirstRanker.com

5. a) Consider the following grammar G:

$$\begin{array}{l} S \rightarrow ASB \mid \in \\ A \rightarrow aAS \mid a \\ B \rightarrow SbS \mid A \mid bb \end{array}$$

Find an equivalent grammar that has: no null productions, and no unit productions one after the other.

b) Convert the given CFG into GNF

$$S \rightarrow CA$$

 $A \rightarrow a$
 $C \rightarrow aB \mid b$ (7M+8M)

- a) Design a PDA that accepts a string of a well formed parenthesis. Consider parenthesis is as
 (), [], { }.
 - b) Construct PDA equivalent to the following CFG

$$S \rightarrow 0A$$

$$A \rightarrow 0ABC + 1B + 0$$

$$B \rightarrow 1$$

$$C \rightarrow 2$$
(7M+8M)

7. a) Consider the following transition table (States versus Tape symbols) of a Turing Machine, M:

	(*)	В
qı	q1, (, R	q1, *, R	q ₂ , *, L	q3, B, L
92	q1, *, R	q2, *, L	q ₂ ,), L	Halt
q 3	Halt	q3, *, L	q3,), L	Halt

If the initial Instantaneous Description (ID) is: $q_1(() B$, then what is the final ID?

b) Design Turing Machine over $\sum = \{1\}$ to accept the language $L = \{1^m/m \text{ is odd}\}$ (7M+8M)

8. a) What is a modified PCP? Explain with some suitable example.b) Explain, in detail, NP Complete and NP hard problems with examples. (7M+8M)

Coo	de No: R22055	(R10)	(SET - 4
	II B. Tech II FORMA	Semester, Supplementary Examinations, Dec – 2 AL LANGUAGES AND AUTOMATA THEORY (Computer Science and Engineering)	2012
Tin	ne: 3 hours	(computer betaller and Lingineering)	Max. Marks: 7
		Answer any FIVE Questions All Questions carry Equal Marks	
1.	a) Give a finite state diagb) Design NFA which ac	gram that accepts all the floating-point numbers. ccepts the language containing either '01' or '10' ov	ter $\Sigma = \{0,1\}.$ (7M+8N)
2.	a) Design a DFA that according to the decimal equivalent of the b) Design a Moore mach if the input ends in 001, and the input ends in 001, and the input ends in 001.	cepts the language over the alphabet, $\Sigma = \{0, 1, 2\}$ we language is divisible by 3. nine and Mealy machine that accepts strings over Σ output a A; if the input ends in 100, output a B; else	where the = {0, 1} where, e output a C. (7M+8N
3.	a) Show that L={ $0^{i}1^{j} g$ b) Show that the following i) $r^{+} = r^{*}r^{+}$ ii) (not show that the following is the following of the following is the following of the following is the following of the	$cd(i,j) = 1$ } is not regular ng regular expression identities are equivalent: $r + s$) [*] = ($r + s^*$) [*]	(7M+81
4.	 a) Construct a context from [], [() ()], ([]), etc. and b) Draw the parse tree for the symbolic formula: (the grammar for generating the balanced parentheses and find the moves of the grammar to derive the strin for the production grammar: $S \rightarrow (S) S \supset S \sim S i j$, $\sim \sim i \supset (i \supset \sim \sim j)$).	e, like (), g: ([()] ()) generating (7M+8M
5.	a) State and prove the pu b) Give CFG for generat	umping lemma for context free languages. ting odd palindromes over the string {a,b}	(7M+8M
6.	a) Design a PDA that ac (), [], { }. b) Construct PDA equ $S \rightarrow 0$ $A \rightarrow 0$ $B \rightarrow 1$ $C \rightarrow 2$	ccepts a string of a well formed parenthesis. Considuivalent to the following CFG DA DABC 1B 0	ler parenthesis is (7M+8N
7.	a) State and prove the Tub) Design a Turing Malength.	uring Machine (TM) halting problem. Inchine, M that accepts a palindrome consisting of	0's and 1's of a (7M+81
8.	a) Describe in detail abob) Describe about modif	out halting problem of a Turing machine ied Post's correspondence problem.	(7M+81