III B.Tech. I Semester Supplementary Examinations, April/May - 2013

FORMAL LANGUAGES \& AUTOMATA THEORY

(Computer Science and Engineering)
Time: 3 Hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. a) Explain the differences between NFA and DFA.?
[8M]
b) Design a DFA which accepts all strings which are ending with 101 over an Alphabet $\{0,1\}$
2. Construct Minimum state Automata for the following DFA?
[16M]
Where * denotes final state

δ	0	1
q 1	q 2	q 6
q 2	q 1	q 3
${ }^{*} \mathrm{q} 3$	q 2	q 4
q 4	q 4	q 2
q 5	q 4	q 5
$\mathrm{q}^{2} 6$	q 5	q 4

3. Give a regular expression for the set of all strings over $\{a, b\}$ accepting all strings which have number of a's divisible by 6 and number of b's divisible by 8.?
4. a) Define Grammar? Explain about Chomsky Classification of Grammars?
b) Explain about Right and Left Linear Grammars?
5. a) Reduce the Grammar G given by
$\mathrm{S} \rightarrow \mathrm{aAa}, \mathrm{A} \rightarrow \mathrm{Sb} / \mathrm{bcc} / \mathrm{DaA}$
$\mathrm{C} \rightarrow \mathrm{abb} / \mathrm{DD}, \mathrm{E} \rightarrow \mathrm{ac}, \mathrm{D} \rightarrow \mathrm{Ada}$
into an equivalent grammar by removing useless symbols and useless productions from it?
b) Convert the following grammar into CNF.
$\mathrm{S} \rightarrow \mathrm{aAD}$
$\mathrm{A} \rightarrow \mathrm{aB} / \mathrm{bAB}$
$\mathrm{B} \rightarrow \mathrm{b}$
$\mathrm{D} \rightarrow \mathrm{d}$.
[$8 \mathrm{M}+8 \mathrm{M}$]
6. a) Show that for every PDA then there exists a $C F G$ such that $L(G)=N(P)$?
b) Construct a PDA for $L=\left\{a^{n} b^{n} c^{n} / n>0\right\}$
7. a) Define Turing Machine? Explain about the Model of Turing Machine?
b) Give a Turing machine that computes ones complement of a binary number?
8. a) Explain about Deterministic context free language and Deterministic PDA.?
b) Show that $L=\left\{a^{n} b^{n} c^{n}: n>=1\right\}$ is a CSL. ?

III B.Tech. I Semester Supplementary Examinations, April/May - 2013

FORMAL LANGUAGES \& AUTOMATA THEORY

(Computer Science and Engineering)
Time: 3 Hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. Design DFA for the following over $\{a, b\}$.
a) All string containing not more than three a's. ?
b) All strings that has at least two occurrences of b between any two occurrences of a. ?
2. Construct Minimum state Automata for the following DFA?

Where * denotes final state

δ	0	1
q 1	q 2	q 3
q 2	q 3	q 5
*q 3	q 4	q 3
q 4	q 3	q 5
*q5	q 2	q 5

3. a) Construct Finite Automata for the regular Expression $1(01+10) * 00$?
b) Show that $\mathrm{L}=\left\{\mathrm{a}^{2 \mathrm{n}} / \mathrm{n}<0\right\}$ is Regular?
4. a) Construct a derivation tree for the string abcd from the grammar $\mathrm{B}, \mathrm{A} \rightarrow \mathrm{bC}, \mathrm{B} \rightarrow \mathrm{d}, \mathrm{C} \rightarrow \mathrm{cd}$?
b) Define Derivation tree? Explain about LMD and RMD?
[$8 \mathrm{M}+8 \mathrm{M}$]
5. a) What do you mean by ambiguity? Show that the grammar $S \rightarrow S / S, S \rightarrow$ a is ambiguous ?
b) Show that the grammar G with production
$\mathrm{S} \rightarrow \mathrm{a} / \mathrm{aAb} / \mathrm{abSb}$
$\mathrm{A} \rightarrow \mathrm{aAAb} / \mathrm{bS}$ is ambiguous.
[$8 \mathrm{M}+8 \mathrm{M}$]
6. a) Explain about PDA?
[4M]
b) Convert the grammar $\mathrm{S} \rightarrow 0 \mathrm{AA}, \mathrm{A} \rightarrow 0 \mathrm{~S} / 1 \mathrm{~S} / 0$ to a PDA that Accepts the same Language by Empty Stack?
[12M]
7. Give a Turing machine for the following:
b) Given $=\{0,1\}$, design a Turing machine that accepts the language denoted by the regular expressions 00 ?
[8M]
b) That shifts the input string, over the alphabet $(0,1)$ by one position right by inserting ' $\#$ 'as the first character. ?
8. a) What is decidability? Explain any two un-decidable problems?
[^0]III B.Tech. I Semester Supplementary Examinations, April/May - 2013

FORMAL LANGUAGES \& AUTOMATA THEORY

(Computer Science and Engineering)
Time: 3 Hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. Construct DFA for the following
a) $\mathrm{L}=\{\mathrm{w} / \mathrm{w}$ has both an even number of 0 's and even number of 1 's $\}$?
b) $L=\{w / w$ is in the form of ' $x 01 y$ ' for some strings x and y consisting of 0 's and 1 's $\}$.?
2. a) Design a Moore Machine to determine the residue mod 4 for each binary string treated as integer?
[8M]
b) Design a Mealy machine that uses its state to remember the last symbol read and emits output ' y ' whenever current input matches to previous one, and emits n otherwise.? [8M]
3. Give the English description and NFA for the following regular expressions.
a) $\mathrm{r}=(1+01+001) *(+0+00)$
b) $\mathrm{r}=\left[00+11+(01+10)(00+11)^{*}(01+10)\right]^{*}$
4. a) Obtain a regular grammar to obtain the set of all strings not containing three consecutive a' s.?
b) Obtain a CFG to generate the set of all strings over alphabet $\{0,1\}$ with exactly twice as many 0 's as 1 's. ?
5. a) List out the Applications of CFL?
b) Construct CNF for the Grammar $\mathrm{S} \rightarrow \mathrm{ABC}, \mathrm{A} \rightarrow 0 \mathrm{~B}, \mathrm{~B} \rightarrow \mathrm{CD} / 0, \mathrm{C} \rightarrow 1$
6. Let G be the grammar given by
$\mathrm{S} \rightarrow \mathrm{aABB} / \mathrm{aAA}, \quad \mathrm{A} \rightarrow \mathrm{aBB} / \mathrm{a}, \quad \mathrm{B} \rightarrow \mathrm{bBB} / \mathrm{A}$
Construct the PDA that accepts the language generated by this grammar G.
b) Define Deterministic pushdown automata. Explain with an example. ?
7. a) Design a Turing Machine that accepts the set of all even palindromes over $\{0,1\}$?
b) Explain about Recursively Enumerable Languages?
8. a) Find whether the post correspondence problem $\mathrm{P}=\{(10,101),(011,11),(101,011)\}$ has a match. Give the solution?
b) Explain Turing reducibility machines?

R07

Set No: 4

III B.Tech. I Semester Supplementary Examinations, April/May - 2013

FORMAL LANGUAGES \& AUTOMATA THEORY

(Computer Science and Engineering)
Time: 3 Hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. a) Design a Moore machine to determine the residue mod 5 for each ternary string (base 3)
treated as ternary integer.?
b) Define Finite Automaton? Explain about the model of Finite Automaton?
2. Construct DFA for given Fig. 1 NFA with \in-moves.
[16M]

3. Find a Regular expression corresponding to each of the following subsets over $\{a, b\}^{*}$.
a) The set of all strings containing no three consecutive a's.
b) The set of all strings where the 10th symbol from right end is a b.
c) The set of all strings over $\{a, b\}$ having even number of a's \& odd number of b's.
d) The set of all strings over $\{a, b\}$ in which the number of occurrences of a is divisible by
[16M]
4. a) Obtain a CFG to generate unequal number of 0 's and 1 's.?
b) Obtain a CFG to obtain balanced set of parentheses.(i.e every left parentheses should match with the corresponding right parentheses). ?
5. Define Ambiguous Grammar? Check whether the grammar $\rightarrow \mathrm{aAB}, \mathrm{A} \rightarrow \mathrm{bC} / \mathrm{cd}, \mathrm{C} \rightarrow \mathrm{cd}, \mathrm{B} \rightarrow \mathrm{c} / \mathrm{d}$ Is Ambiguous or not?
6. a) Explain in brief about Push Down Automata and context free language?
b) Let G be a CFG with the following productions.
$\mathrm{S} \rightarrow \mathrm{aB}$ c
$\mathrm{A} \rightarrow \mathrm{abc}$
$\mathrm{B} \rightarrow \mathrm{a} \mathrm{A} \mathrm{b}$
$C \rightarrow A B \quad C \rightarrow c$

Construct a PDA M such that the language generated by M and G are equivalent. ?
7. a) Design a Turing Machine for $\mathrm{L}=\left\{0^{\mathrm{n}} 1^{m} 0^{\mathrm{n}} 1^{m} / \mathrm{m}, \mathrm{n}>=1\right\}$?

b) Explain about the Design of Turing Machines?

8. a) Explain about the Decidability and Un-decidability Problems?
b) Explain about Turing Reducibility?

[^0]: b) Show that if L and L ? are recursively enumerable, and then L is recursive.?

