B.Tech IV Year I Semester (R09) Supplementary Examinations, May 2013

FINITE ELEMENT METHODS IN CIVIL ENGINEERING

(Civil Engineering)

Time: 3 hours
Max. Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 (a) Write the differences between FEM and classical methods.
(b) Use the Rayleigh-Ritz method to find the displacement of the midpoint of the rod shown in fig:

Body force per unit volume $\rho \mathrm{g}=1$

$$
\begin{aligned}
& E=1 \\
& A=1
\end{aligned}
$$

2 (a) Discuss the stress-strain relation for plane strain problems.
(b) Explain the term "axi - symmetric problems" and give consecutive law for such problems.

3 (a) Write the difference between beam element and bar element.
(b) An axial load $\mathrm{P}=300 \times 10^{3} \mathrm{~N}$ is applied at $20^{\circ} \mathrm{C}$ to the rod shown in fig. temperature is then raised to $60^{\circ} \mathrm{C}$.
(i) Assemble stiffness matrix, force matrix.
(ii) Find the nodal displacements and element stresses.
$\mathrm{E}_{1}=70 \times 10^{9} \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{E}_{2}=200 \times 10^{9} \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{~A}_{1}=900 \mathrm{~mm}^{2}, \mathrm{~A}_{2}=1200 \mathrm{~mm}^{2}$
$\alpha_{1}=23 \times 10^{-6} /{ }^{\circ} \mathrm{C}, \alpha_{2}=11.7 \times 10^{-6} /{ }^{\circ} \mathrm{C}$.

4 (a) Determine the shape functions for quadratic element shown in fig:

(b) Determine the shape function for two noded beam elements.

5 Find the displacements and stresses in a beam shown in fig 1. Idealize the beam into two 'CST' elements shown in fig 1. Assume plane stress condition take $\mu=0.25$, $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, thickness $=20 \mathrm{~mm}$.

Fig 1.
6 (a) State and explain the three basic laws on which isoparametric concept is developed.
(b) Form a Jacobian matrix for 4-noded isoparametric quadrilateral element.

7 Formulate element equations for the axisymmetric element shown in fig 2. Take $\mathrm{E}=100 \mathrm{Gpa}, \gamma=0.3, \alpha=5 \times 10^{-4} \mathrm{Per}^{\circ} \mathrm{C} . \Delta \mathrm{T}=60^{\circ} \mathrm{C}, \mathrm{P}=8 \mathrm{~N} / \mathrm{mm}^{2}$ acting \perp ler to side 'JK'. Nodal co-ordinates in "mm" are $\gamma_{i}=5, \gamma_{j}=1, \gamma_{k}=3, z_{i}=5, z_{j}=5, z_{k}=2$.

Fig 2.
8 (a) Write short notes on Gaussian quadrature integration technique.
(b) Evaluate $\int_{\xi=-1}^{+1}[\mathrm{~N}]^{\mathrm{T}}[\mathrm{N}] \mathrm{d} \xi$ for one dimensional quadratic element to illustrate the application of Gaussian quadrature method. Take the following which is suitable for above problem of $\mathrm{n}=2$ take $\xi_{1}=-0.57735, \xi_{2}=0.57735, \omega_{1}=1, \omega_{2}=1$ of $\mathrm{n}=3$ take $\xi_{1}=-0.7746, \xi_{2}=0, \xi_{3}=+0.7746, \omega_{1}=5 / 9, \omega_{2}=8 / 9, \omega_{3}=5 / 9$.

