B.Tech II Year II Semester (R09) Regular \& Supplementary Examinations, April/May 2013

FLUID MECHANICS AND HYDRAULIC MACHINERY
 (Mechanical Engineering)

Time: 3 hours
Max Marks: 70

Answer any FIVE questions

All questions carry equal marks

1 A square metal plate 1.8 m side and 1.8 mm thick weighing 60 N is to be lifted through a vertical gap of 30 mm of infinite extent. The oil in the gap has a specific gravity of 0.95 and viscosity of $3 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$ if the metal plate is to be lifted at a constant speed of $0.12 \mathrm{~m} / \mathrm{s}$, find the force and power required.

2 (a) What are the various types of flows? Explain in brief.
(b) Write a short note on Euler's equation.

3 (a) Explain Reynolds's experiment.
(b) Discuss and differentiate hydraulic gradient and total energy lines.

4 A set of water of diameter 50 mm moving with a velocity of $25 \mathrm{~m} / \mathrm{s}$ impinges on a fixed curved plate tangentially at one end at an angle of 30° to the horizontal find the resultant force of the jet on the plate if the jet is deflected through an angle of 60°. Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.

5 (a) What are base-load and peak load plants?
(b) Two turbo-generators each of capacity 25000 KW have been installed at a hydel power station. During a certain period the load on the hydel plant varies from 15000 KW to 40000 KW. Find the total installed capacity, the load factor, the plant factor and the utilization factor.

6 (a) What is the role of a draft tube with respect to turbine? What are the various types of draft tubes?
(b) Explain Keplan turbine in brief.

7 (a) What is meant by cavitation? When can it occur in a turbine?
(b) A Francis turbine working under a head of 5 m at a speed of $210 \mathrm{r} . \mathrm{p} . \mathrm{m}$. develops 75 KW when the rate of flow of water is $1.8 \mathrm{~m}^{3} / \mathrm{s}$. The runner diameter is 1 m . If the head on this turbine is increased to 18 m , find its new-speed, discharge and power.

8 Explain the working of a centrifugal pump with neat sketch.

B.Tech II Year II Semester (R09) Regular \& Supplementary Examinations, April/May 2013

FLUID MECHANICS AND HYDRAULIC MACHINERY
 (Mechanical Engineering)

Time: 3 hours
Max Marks: 70

Answer any FIVE questions

All questions carry equal marks

1 The velocity distribution of flow over a plate is parabolic with vertex 30 cm from the plate where the velocity is $180 \mathrm{~cm} / \mathrm{s}$. If the velocity of the fluid is $0.9 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$ find the velocity gradient and shear stresses at distance of 0.15 cm and 30 cm from the plate.

2 Water flows through a 0.9 m diameter pipe at the end of which there is a reducer connecting to a 0.6 m diameter pipe. If the gage pressure of the entrance to the reducer is $412.02 \mathrm{KN} / \mathrm{m}^{2}$ and the velocity is $2 \mathrm{~m} / \mathrm{s}$, determine the resultant thrust on the reducer assuming that the frictional loss of head in the reducer is 1.5 m .

3 Explain venturimeter in detail with a neat sketch.
4 A jet of water of diameter 8 cm strikes a curved plate at its centre with a velocity of $18 \mathrm{~m} / \mathrm{s}$. The curved plate is moving with a velocity of $8 \mathrm{~m} / \mathrm{s}$ in the direction of the jet. The jet is deflected through an angle of 165°. Assuming the plate smooth find. Force exerted on the plate in the direction of set, power of the jet, efficiency of the jet.

5 (a) Explain tidal plants.
(b) Differentiate storage and pondage support your answer with a neat sketch.

6 How do you design a Francis turbine runner? Give step by step procedure.
7 (a) What is meant by governing of turbines?
(b) A turbine develops 7460 KW under a head of 24.7 m at 135 r.p.m. What is the specific speed? What would be its normal speed and output under a head of 19.5 m .

8 A single acting reciprocating pump has a plunger of diameter 250 mm and stroke of 350 mm . If the speed of the pump is 60 r.p.m and it delivers 16.5 lps of water against a suction head of 5 m and a delivery head of 20 m , find the theoretical discharge, coefficient of discharge, the slip, the percentage slip of the pump and the power required to drive the pump.

B.Tech II Year II Semester (R09) Regular \& Supplementary Examinations, April/May 2013

FLUID MECHANICS AND HYDRAULIC MACHINERY
 (Mechanical Engineering)

Time: 3 hours
Max Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 A circular disc of diameter D is slowly rotated in a liquid of large viscosity (μ) at a small distance (h) from a fixed surface. Derive an expression of torque (T) necessary to maintain an angular velocity (W).

2 (a) Derive the continuity equation for one dimensional flow.
(b) Explain momentum equation and give its applications.

3 A pipe 50 mm diameter is 6 m long and the velocity of flow of water in the pipe is $2.4 \mathrm{~m} / \mathrm{s}$. What loss of head and the corresponding power would be saved if the central 2 m length of pipe was replaced by 75 mm diameter pipe the change of section being sudden? Take $f=0.04$ for the pipes of both diameters.

4 A jet of eater from a nozzle is deflected through 60° from its original direction by a curved plate which it enters tangentially without shock with a velocity of $30 \mathrm{~m} / \mathrm{s}$ and leaves with a mean velocity of $25 \mathrm{~m} / \mathrm{s}$. If the discharge from the nozzle is $0.9 \mathrm{Kg} / \mathrm{s}$, find the magnitude and direction of the resultant force on the vane if the vane is stationary.

5 (a) Explain Run-off river plants.
(b) What is a mass curve? Explain with sketch.

6 Design a Pelton wheel which is required to develop 1500 KW when working under a head of 160 m at a speed of 420 r.p.m. The overall efficiency may be taken as 85% and assume other data which is required.

7 Discuss unit and specific quantities in detail.

8 What is meant by specific speed of a pump? Derive the expression for specific speed.
B.Tech II Year II Semester (R09) Regular \& Supplementary Examinations, April/May 2013

FLUID MECHANICS AND HYDRAULIC MACHINERY
 (Mechanical Engineering)

Time: 3 hours
Max Marks: 70

Answer any FIVE questions

All questions carry equal marks

The space between two square flat parallel plates is filled with oil. Each side of the plate is 720 mm . The thickness of the oil film is 15 mm . The upper plate, which moves at $4 \mathrm{~m} / \mathrm{s}$, requires a force of 120 N to maintain the speed. Determine the dynamic viscosity of oil is 0.95 .

2 (a) Derive the Bernoulli's equation.
(b) Define stream line, path line and streak line.

3 A pipe 50 mm diameter is 6 m long and the velocity of flow of water in the pipe is $2.4 \mathrm{~m} / \mathrm{s}$. What loss of head and the corresponding power would be saved if the central 2 m length of pipe was replaced by 75 mm diameter pipe the change of section being sudden? Take $f=0.04$ for the pipes of both diameters.

4 (a) Derive the expression for force exerted on a flat vertical plate moving in the direction of jet.
(b) A nozzle of 50 mm diameter delivers a stream of water at $20 \mathrm{~m} / \mathrm{s}$ perpendicular to a plate that moves away from the jet at $5 \mathrm{~m} / \mathrm{s}$, find the force on the plate, the work done and the efficiency of jet.

5 (a) Explain pumped storage plants.
(b) A run-of-river plant is installed on a river having a minimum flow of $15 \mathrm{~m}^{3} / \mathrm{s}$. If the plant is used as a peak load plant operating only for 6 hours a day, find the firm capacity of the plant without pondage and with pondage but allowing 10% of the water to be lost in evaporation and other losses. Head at the plant is 10 m and the plant efficiency may be assumed as 85%.

6 (a) What are the working proportions of a Pelton wheel?
(b) Give broad classification of turbines.

7 (a) Explain constant speed characteristic curves of a turbine.
(b) What is a surge tank?

8 (a) Define static and manometric head of a centrifugal pump. State the different types of head losses which may occur in a pump installation.
(b) What are the different efficiencies of a centrifugal pump?

