B.Tech III Year I Semester (R07) Supplementary Examinations, May 2013

FORMAL LANGUAGES AND AUTOMATA THEORY

(Computer Science and Engineering)
Time: 3 hours
Max Marks: 80
Answer any FIVE questions
All questions carry equal marks

1 (a) Prove the following theorem by Induction.

$$
1+2+3+\ldots \ldots+n=n(n+1) / 2
$$

(b) A tree with ' n ' vertices has ($n-1$) edges. Prove the following theorem by induction.

2 Design a Moore machine that will read sequences made up of letters A.E.I.O.U and will give as output the same sequences except that in case where can I directly follows an E, it will be changed to U. Design the Mealy machine for the same.

3 For each of the languages given below. Design a finite automata and regular expressions to recognize them. In all cases the alphabet is $\{0,1\}$
(a) $L_{1}=\{w \mid w$ does not contain the substring 110$\}$.
(b) $L_{2}=\{w \mid w$ contains and even number of 0 's and exactly two 1 's $\}$.

4 (a) What are the properties of the CFL generated by a CFG?
(b) Find the grammar for the language $L=\left\{a^{2 n} b c\right.$, where $\left.n>1\right\}$
(c) Find the language generated by $\mathrm{S} \rightarrow 0 \mathrm{~S} 1|0 \mathrm{~A}| 0|1 \mathrm{~B}| 1, \mathrm{~A} \rightarrow 0 \mathrm{~A}|0, \mathrm{~B} \rightarrow 1 \mathrm{~B}| 1$.

5 Define Griebach normal form for a CFG. Find GNF for the following grammar.

$$
\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} / \mathrm{T} \quad \mathrm{~T} \rightarrow \mathrm{~T}^{*} \mathrm{~F} / \mathrm{F} \quad \mathrm{~F} \rightarrow(\mathrm{E}) / \mathrm{a}
$$

6 (a) Design a PDA for $L=\left\{x x^{r} / x \in\{a, b\}^{*}\right\}$. Process the string abbaabba. Is you PDA deterministic or non deterministic? Justify your answer. Note: x^{r} stands for reverse of the string x.
(b) Explain the differences between a PDA and a FA.

7 Design a TM for multiplication of two positive integers.
Discuss any two modifications to the basic model of TM.
8 (a) Explain about Turing reducibility.
(b) What is PCP? Give solution to the following PCP, if exists.

$$
W=(00,001,1000) \quad X=(0,11,011)
$$

