B.Tech II Year II Semester (R07) Supplementary Examinations, April/May 2013 HYDRAULICS \& HYDRAULIC MACHINERY
(Civil Engineering)
Time: 3 hours
Max Marks: 80
Answer any FIVE questions
All questions carry equal marks

1 (a) Draw for given discharge, the specific energy head diagram. Mark the critical depth and the minimum specific energy head. Explain the salient features.
(b) A rectangular channel which is laid on a bottom slope of 0.0064 is to carry $20 \mathrm{~m}^{3} / \mathrm{s}$ of water. Determine the width of the channel when the flow is in critical condition. Take n as 0.01 .

2 (a) What are the characteristics and uses of hydraulic jump?
(b) The depths of water before and after hydraulic jump in a 5 m wide rectangular channel are 1 m and 8 m . Calculate the discharge through the channel and power lost in the jump.

3 (a) State whether the following equations are dimensionally homogeneous.

$$
\text { (i) } Q=\Pi d b v \text { (ii) } Q=C_{d} a \sqrt{2 g h} \text { (iii) } Q=A c \sqrt{m i}
$$

(b) What are the fields of applications of Froude's law and mach law?

4 (a) Derive the expression for the work done per second on a series of moving curved vanes by a jet of water striking at one of the tips of the vane.
(b) A jet of water of diameter 100 mm strikes a curved plate at its center with a velocity of $15 \mathrm{~m} / \mathrm{s}$. The curved plate is moving with a velocity of $7 \mathrm{~m} / \mathrm{s}$ in the direction of the jet. The jet is deflected through an angle of 150°. Assuming the plate smooth find:
(i) Force exerted on the plate in the direction of the jet.
(ii) Power of the jet, and
(iii) Efficiency.

5 (a) Describe in detail, different classifications of turbines.
(b) A reaction turbine works at 500 r.p.m. under a head of 100 m . The diameter of turbine at inlet is 100 cm and flow area is $0.35 \mathrm{~m}^{2}$. The angles made by absolute and relative velocities at inlet are 15° and 60° respectively with the tangential velocity. Determine:
(i) The volume flow rate.
(ii) The power developed, and
(iii) Efficiency. Assume whirl at outlet to be zero.

6 (a) What are the functions governing the hydraulic turbine. Explain with a sketch, the governing mechanism of an impulse turbine.
(b) A 65 cm diameter turbine runner develops 60 KW under a head of 30 m . Its speed is 4200 rpm . Compute its specific speed and unit speed. It is required to build a similar turbine to develop 250 KW under a head of 40 m . Calculate the required diameter.

7 (a) Discuss various methods adopted to increase the efficiency of a centrifugal pump by altering the shape of the casing.
(b) A centrifugal pump having an overall efficiency of 80% delivers discharge 1850 lpm , working against a height of 20 m through a pipe of 10 cm diameter and 95 m long. Calculate HP required to drive the pump. $f=0.0075$.

8 (a) Discuss critically, how do you plan a power house
(b) The designed capacity of a hydropower plant is $1.32 \times 10^{5} \mathrm{KW}$. If the power generated in the plant is $9 \times 10^{4} \mathrm{KW}$, find the efficiency of the plant. If the peak discharge is 1.5 times the normal discharge, determine the plant capacity, plant factor and total energy produced in a year.

