B.Tech II Year II Semester (R09) Supplementary Examinations, April/May 2013 ELECTROMAGNETIC THEORY \& TRANSMISSION LINES

(Electronics and Communication Engineering)
Time: 3 hours
Max Marks: 70

> Answer any FIVE questions
> All questions carry equal marks

1 (a) Give the limitation of Gauss's law? And discuss some of its applications.
(b) Determine the charge density due to the following electric flux densities
(i) $\mathrm{D}=6 x \mathrm{yi}_{\mathrm{x}}+4 \mathrm{y}^{2} \mathrm{i}_{\mathrm{y}}$
(ii) $\mathrm{D}=\mathrm{rsin} \phi \mathrm{i}_{\mathrm{r}}+2 \operatorname{rcos} \phi \mathrm{i}_{\phi}+3 \mathrm{z}^{2} \mathrm{i}_{\mathrm{z}}$

2 (a) The region between parallel plates of distance ' d ' is filled with two dielectrics with conductivities σ_{1}, σ_{2} for $0<\mathrm{x}<\mathrm{t}$ and $\mathrm{t}<\mathrm{x}<\mathrm{d}$ respectively, find the boundary conditions to be satisfied at $\mathrm{x}=\mathrm{t}$, find potentials in the two regions.
(b) Find the flux density at a point $(0,0,5)$ due to a point charge of 10 nC at $(0,0,2)$ and a line charge of density $10 \mathrm{nC} / \mathrm{m}$ along x -axis?

3 (a) Derive an expression for magnetic field at a point due to two long straight parallel wires carrying equal and opposite currents.
(b) A conductor carries a current of 5 amps along the x-direction. Find the force on it if it is subjected to a flux density of $1 \mathrm{~Wb} / \mathrm{m}^{2}$ along z-direction.

4 (a) Find the capacitance of an isolated sphere of radius ' R '.
(b) Considering earth as a conducting sphere of radius 6550 km , calculate the surface charge on it?

5 A uniform plane wave is propagating in a medium having the properties $\sigma=1 \mathrm{~s} / \mathrm{m}, \epsilon_{\mathrm{r}}=36, \mu_{\mathrm{r}}=4$. The electric field is given by $E=100 e^{-a x} \cos \left(10 \Pi \times 10^{8} t-\beta x\right) a_{z} V / m$. Determine α, and β and write time domain expression for the associated magnetic field vector.

6 A uniform sinusoidal plane wave in air with the following phasor expression for electric field intensity $\mathrm{E}_{\mathrm{i}}(\mathrm{x}, \mathrm{z})=\mathrm{a}_{\mathrm{y}} 10 \mathrm{e}^{-\mathrm{j}(6 \mathrm{x}+8 \mathrm{z})} \mathrm{v} / \mathrm{m}$ is incident on a perfectly conducting plane at $\mathrm{z}=0$.
(i) Find frequency and wave length of the wave.
(ii) Determine the angle of incidence.
(iii) Find $\mathrm{E}_{\mathrm{r}}(\mathrm{x}, \mathrm{z})$ and $\mathrm{H}_{\mathrm{r}}(\mathrm{x}, \mathrm{z})$ of the reflected wave.

7 An open wire transmission line terminated in its characteristic impedance has the following primary constants at $1 \mathrm{KHz} . \mathrm{R}=6 \Omega / \mathrm{km}, \mathrm{L}=2 \mathrm{mH} / \mathrm{km}, \mathrm{C}=0.05 \mu \mathrm{~F} / \mathrm{km}$, and $\mathrm{G}=0.5 \times 10^{-6} \mathrm{mhos}$. Calculate the phase velocity and the attenuation in db suffered by a signal in a length of 100 km .

8 A transmission line 100 m long operating at 100 MHz has the following constants $Z_{0}=50 \angle-5^{0}$, $\alpha=$ 0.001 neper $/ \mathrm{m}, \beta=\frac{\pi}{1.8} \mathrm{rad} / \mathrm{m}$. The transmission line is now connected to a load and the value of voltage reflection coefficient measured at a distance of 4 m away from the load is found to be $0.5 \angle 30^{\circ}$. Calculate the input impedance of the line.

