III B.Tech. I Semester Supplementary Examinations, April/May - 2013
LINEAR SYSTEMS ANALYSIS
(Electrical and Electronics Engineering)
Time: 3 Hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. a) Write state equations for the network shown using graph theory.

b) What is state transition matrix? Discuss about its properties.
2. a) Determine the Fourier transform of the unit step, ramp and sinusoidal signals.
b) State and Prove Parseval's Theorem.
3. a) Determine the Fourier transform for the following functions of.
(i) $f(t)=t^{2} e^{-2 t} u(t)$
(ii) $f(t)=e^{-a t^{2}}$
(iii) $f(t)=\frac{2 a}{a^{2}+t^{2}}$
(iv) $f(t)=\frac{t^{n-1}}{(n-1)!} e^{-a t} u(t)$
b) Explain about the power spectrum of the series?
4. a) In the figure shown below the switch is initially at position ' a '. After steady state condition is reached when $\mathrm{i}(0)=2 \mathrm{~A}$ and $\mathrm{v}_{\mathrm{c}}(0)=2 \mathrm{~V}$. The switch is now thrown to position ' b '. Determine the current in the circuit?

b) A triangular wave shown below is applied to a series RL circuit with $\mathrm{R}=1$ ohm $\mathrm{L}=1 \mathrm{H}$. Determine the current $\mathrm{i}(\mathrm{t})$ through the circuit.

5. a) Find the range of ' a ' so that $H(s)=S^{4}+S^{3}+a S^{2}+2 S+3$ is Hurwitz .
b) Test whether the following function is positive real or not?

$$
N(s)=\frac{(S+2)}{\left(S^{2}+3 S+2\right)}
$$

6. a) Synthesize the Foster II form network when its admittance function is given as.

$$
Y(s)=\frac{S\left(S^{2}+3\right)\left(S^{2}+5\right)}{\left(S^{2}+2\right)\left(s^{2}+4\right)}
$$

b) State and explain the properties of LC impedance function.
7. a) Consider a filter with $H(\omega)=\frac{1}{1+\mathrm{j} \omega} \quad$ and input $\mathrm{x}(\mathrm{t})=\mathrm{e}^{-2 \mathrm{t}} \mathrm{u}(\mathrm{t})$. Find the energy spectral density of the output.
b) Explain about power spectral density.
8. a) Determine the inverse transform of.

$$
\begin{equation*}
X(z)=\frac{3 Z^{4}-10 Z^{3}-5.75 Z^{2}}{(Z-1)(Z-0.5)\left(Z^{2}+0.25\right)} \tag{8M}
\end{equation*}
$$

b) Define Z-Transform \& discuss about the properties of Z- transform.

III B.Tech. I Semester Supplementary Examinations, April/May - 2013

LINEAR SYSTEMS ANALYSIS

(Electrical and Electronics Engineering)

Time: 3 Hours

Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. a) A system is described by a third order differential equation $\dddot{x}+9 \ddot{x}+26 \dot{x}+24 x=12 u(t)$.

Where x is the output and $\mathrm{u}(\mathrm{t})$ is the input. Obtain the state space representation of the system.
[8M]
b) Determine the state transition matrix for the matrix $A=\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & -2 & 1 \\ 0 & 4 & 1\end{array}\right]$
2. a) Determine the Fourier coefficients $a_{n} \& b_{n}$ of the waveform shown in the fig. having an 'ON' period = 'OFF' period $=\mathrm{T} / 2$. The waveform is a rectangular pulse train with 50% duty cycle.

b) Determine the Fourier transform of the Signum function.
[8M]
3. A 2Ω resistive load is supplied from a full wave rectifier connected to $230 \mathrm{~V}, 50 \mathrm{~Hz}$ single phase supply. Determine the average and RMS values of load current. Hence determine the proportion of DC power \& AC power to the total power in the load. Investigate the effect of adding an inductance in series with the load.
[16M]
4. a) A series RL circuit experiences an exponential voltage $v=10 e^{-100 t}$ after closing a switch at $\mathrm{t}=0$ assume $\mathrm{R}=1 \Omega \mathrm{~L}=0.1 \mathrm{H}$
[8M]
b) Current $\mathrm{I}(\mathrm{s})$ in a network is given by $I(s)=\frac{2 S+3}{S^{2}+3 S}$. Find $\mathrm{i}(\mathrm{t})$, the current at any time t .
5. a) Check whether the polynomial $S^{4}+S^{3}+5 S^{2}+3 S+4$ is Hurwitz or not
6. An impedance function is given by $Z(s)=\frac{(S+1)(S+4)}{S(S+2)(S+5)}$. Find the R-C representation of Cauer-I and II forms.
7. a) Compare energy spectral density with power spectral density function.
b) Define cross-correlation function and explain the properties of it.
8. a) What are the differences between continuous time signal \& discrete time signal?
b) Determine Z-Transform of functions $\mathrm{x}(\mathrm{t})=\sin \omega \mathrm{t}$ and $\mathrm{x}(\mathrm{t})=\cos \omega \mathrm{t}$.

Set No: 3

III B.Tech. I Semester Supplementary Examinations, April/May - 2013
LINEAR SYSTEMS ANALYSIS
(Electrical and Electronics Engineering)

Time: 3 Hours

Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. For the R-L-C circuit shown in fig. the output is the voltage across the inductance. Determine the output for
[16M]
(i) $\mathrm{i}(0)=0, \mathrm{v}_{\mathrm{c}}(0)=10$ and $\mathrm{e}(\mathrm{t})=0$
(ii) $i(0)=1, v_{c}(0)=0$ and $e(t)=$ unit step
(iii) $\mathrm{i}(0)=\mathrm{v}_{\mathrm{c}}(0)=0$ and $\mathrm{e}(\mathrm{t})=$ unit impulse

2. a) State the relation between the trigonometric \& the exponential Fourier series.
b) Sketch the waveform of a periodic function whose Fourier series has.
(i) Only odd harmonics but both sine \& cosine terms are present.
(ii) Only even harmonics but both sine $\&$ cosine terms are present.
(iii) Only sine terms but all harmonics are present.
(iv) Only cosine terms but all harmonics are present.
3. A periodic voltage $\mathrm{v}(\mathrm{t})$ is applied to the input terminal of a series RLC circuit shown in the figure \boldsymbol{a}. Determine the current $\mathrm{i}(\mathrm{t}) \&$ sketch the line spectra and power spectra.
[16M]
(i) A triangular periodic signal as shown in fig. \boldsymbol{b} but with 1 sec
(ii) A rectified sine wave in fig. \boldsymbol{c}

Fig. a

Fig. b

fig. ci
4. a) The current through a circuit element is $\frac{4 S^{2}}{S+7}$ Find the current in t - domine as $S \rightarrow 0, S \rightarrow \infty$. Discuss about the nature of circuit elements.
b) A step voltage of 10 volts is applied at $t=0$ in a series $R C$ circuit where $R=1 \Omega$ and $C=2$ Farads. Initial charge of a capacitor is nil. Using Laplace transform find $i(t)$.
5. a) State and explain the properties of Hurwitz polynomial.
b) Check whether the function $N(s)=\frac{(S+2)(S+4)}{(S+1)(S+3)} \quad$ is positive real or not.
6. a) Synthesize the network whose driving impedance is given by $Z(s)=\frac{6 S^{2}+3 S^{2}+2 S+1}{6 S^{3}+3 S}$ b) An impedance function is given by $Z(s)=\frac{(S+1)(S+4)}{S(S+2)(S+5)}$

Find R-L representation of Foster-I and II forms
7. a) Discuss about the principle of flat top sampling with neat schematics.
b) Find the auto-correlation function of the sine signal expressed as below $\mathrm{x}(\mathrm{t})=\mathrm{A} \sin (\omega \mathrm{t}+\varphi)$, where $\omega=2 \pi / \mathrm{T}$
8. a) Find inverse Z-transform of the following function $H(Z)=\frac{-4+8 Z^{-1}}{1+6 Z^{-1}+8 Z^{-2}}$ using partial fraction method.
[8M]
b) Determine the Z-transform of the ramp sequence $\mathrm{x}(\mathrm{n})=\mathrm{An}$ and the sequence $x(n)=A n r^{n}$.

III B.Tech. I Semester Supplementary Examinations, April/May - 2013

LINEAR SYSTEMS ANALYSIS

(Electrical and Electronics Engineering)
Time: 3 Hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. a) Explain the modeling process of linear systems by means of a specific example.
[8M]
b) A system is described by a third order differential equation $\dddot{x}+7 \ddot{x}+14 \dot{x}+8 x=u(t)$.

Develop state space representation where the system matrix is a diagonal one.
2. a) Explain the exponential form of Fourier series.
[8M]
b) Find the complex Fourier coefficients for the half wave rectified signal shown in the fig. Function $f(t)$ has a period $T=2 \sec \&$ frequency, $\omega=2 \pi / T=\pi$

3. Determine the Fourier coefficients for the rectangular waveform shown in fig using graphical method.
[16M]

4. a) Determine the laplace transform expressions for the following
(i) A voltage defined by $v(t)=10 u(t)-10 u(t-2)$
(ii) Current defined by $i(t)=e^{-(t-2)}$

If the above quantities refer to a circuit determine its components.
[8M]
b) A 10 V step voltage is applied across a RC series circuit at $\mathrm{t}=0$. Find $\mathrm{i}(\mathrm{t})$ at $\mathrm{t}=0^{+}$and obtain the value of $\mathrm{di} / \mathrm{dt}$ at $\mathrm{t}=0^{+}$. Assume $\mathrm{R}=100 \Omega \mathrm{C}=100 \mu \mathrm{~F}$.
[8M]
5. a) Test the function $Z(s)=\frac{S^{2}+7}{(S+1)^{3}}$ for positive realness.
b) Check whether the polynomial $S^{4}+S^{3}+7 S^{2}+4 S+6$ is Hurwitz or not
6. The driving point impedance of a one port reactive network is given by $Z(s)=\frac{4 S\left(s^{2}+4\right)}{\left(S^{2}+1\right)\left(S^{2}+16\right)}$. Obtain the Foster forms of LC network realization.
7. a) Define auto-correlation. Explain the auto correlation of a periodic waveform.
8. a) The Z-transfer function of a system is given as $H(Z)=\frac{1}{Z^{2}-\frac{1}{2} Z+\frac{1}{8}}$. Detrmine its discreet unit step response assuming the system to be initially relaxed.
b) Determine Z-transform of $X(s)=\frac{a}{\left(S^{2}-a^{2}\right)}$.

