Correction in I B.Tech I Semester Regular Examinations MATHEMATICAL METHODS(R10107)

Set No 3. -- Question No: 3

Reduce the quadratic form $3 x^{2}-2 y^{2}-z^{2}-4 x y+12 y z+8 z x$ to canonical form by orthogonal transformation .Also find its nature, rank index signature and the transformation which transforms quadratic form to canonical from.

I B.Tech I Semester Regular Examinations, February 2013 MATHEMATICAL METHODS
 (Common to Civil Engineering, Electrical \& Electronics Engineering, Computer Science \& Engineering, Electronics \& Instrumentation Engineering, Aeronautical Engineering, Bio-Technology and Automobile Engineering)

Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find rank using Echelon form $A=\left[\begin{array}{cccc}10 & -2 & 3 & 0 \\ 1 & 5 & 1 & 2 \\ -1 & -2 & 10 & 1 \\ 2 & 3 & 4 & 9\end{array}\right]$
(b) Solve by Gauss seidal method $5 \mathrm{x}_{1}+\mathrm{x}_{2}+2 \mathrm{x}_{3}+\mathrm{x}_{4}=10,-6 \mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}=-10,4 \mathrm{x}_{1}+8 \mathrm{x}_{3}-$ $3 \mathrm{x}_{4}=9,2 \mathrm{x}_{1}+2 \mathrm{x}_{2}-\mathrm{x}_{3}+7 \mathrm{x}_{4}=12$
2. Find Eigen Values and Eigen vector of $A=\left[\begin{array}{ccc}2 & 2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$
3. Find the nature of the quadratic form $2 x^{2}+4 x y+y^{2}+3 y z+4 z^{2}$
4. (a) Evaluate the real root of the equation $x^{4}-x-10=0$ by Bisection method
(b) Compute the real root of the equation $x e^{x}=2$ by the method of false position.

$$
[8+7]
$$

5. (a) Find the value of y from the following data at $\mathrm{x}=0.47$

$\mathrm{X}:$	0	1	2	3	4	5
$\mathrm{Y}:$	1	2	4	7	11	16

(b) Use Lagrange's interpolation formula, find $\mathrm{f}(5)$ from the following data.

x	1	3	4	6	9
$\mathrm{Y}=\mathrm{f}(\mathrm{x})$	-3	9	30	132	156

6. (a) A rod is rotating in a plane. The following Table gives the angle θ (in radians) through which the rod has turned for various values of time t (in seconds).

$\mathrm{t}:$	0	0.2	0.4	0.6	0.8	1.0	1.2
$\theta:$	0	0.12	0.49	1.12	2.02	3.20	4.67

Find the angular velocity and angular acceleration of the rod at $\mathrm{t}=0.6$.
(b) Using the Simpson's Rule, evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ by dividing the range (of integration) into 6 equal parts.
7. (a) Solve $y^{1}=x+y, y(1)=1$ by Picard's method hence find $y(0.1), y(0.2)$ and check your answer with exact solution
(b) Solve $\frac{d y}{d x}=\frac{2-y^{2}}{5 x}$ Find $\mathrm{y}(4.4)$ by modified Euler's method if $\mathrm{y}=1$ when $\mathrm{x}=4, \mathrm{~h}=0.20$

$$
[8+7]
$$

8. (a) Fit a curve of the type $\mathrm{y}=\mathrm{ae}^{b x}$ to the data by the method of least squares

x	77	100	185	239	285
y	2.4	3.4	7	11.1	19.6

(b) Fit a curve of the type $\mathrm{y}=\mathrm{ab}^{x}$ to the following data by the method of least squares

x	0	1	2	3	4	5	6	7
y	10	21	35	59	92	200	400	610

I B.Tech I Semester Regular Examinations, February 2013 MATHEMATICAL METHODS
(Common to Civil Engineering, Electrical \& Electronics Engineering, Computer Science \& Engineering, Electronics \& Instrumentation Engineering, Aeronautical Engineering, Bio-Technology and Automobile Engineering)

Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find rank using Echelon form $A=\left[\begin{array}{cccc}10 & -2 & 3 & 0 \\ 1 & 5 & 1 & 2 \\ -1 & -2 & 10 & 1 \\ 2 & 3 & 4 & 9\end{array}\right]$
(b) Solve by Gauss seidal method $5 \mathrm{x}_{1}+\mathrm{x}_{2}+2 \mathrm{x}_{3}+\mathrm{x}_{4}=10,-6 \mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}=-10$, $4 x_{1}+8 x_{3}-3 x_{4}=9,2 x_{1}+2 x_{2}-x_{3}+7 x_{4}=12$
2. Verify Cayley - Hamilton theorem and find A^{-1} and A^{4} if $A=2\left[\begin{array}{ccc}1 & 2 & 4 \\ -2 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
3. (a) Find the nature of the quadratic form $5 x^{2}+5 y^{2}+14 z^{2}+2 x y-16 y z-8 z x$
(b) If $\mathrm{A}=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]$ then find A^{50}
4. (a)Compute the real root of the equation $x^{3}-x-11=0$ by Bisection method (b)Evaluate the real root of the equation $x^{2}-\log _{e} x-12=0$ by the method of false position.
5. (a) The following table gives the viscosity of anoil as a function of temperature. Use Lagrange's formula, to find viscosity of oil at a temperature of 140°.

Temp. ${ }^{\circ}$:	110	130	160	190
Viscosity :	10.8	8.1	5.5	4.8

(b) Find the cubic polynomial which takes the following values, hence or otherwise evaluate $f(4)$.

x	0	1	2	3
$\mathrm{~F}(\mathrm{x})$	1	2	1	10

6. (a) Using the table below, find $f^{\prime}(0)$

x	0	2	3	4	7	9
$\mathrm{f}(\mathrm{x})$	4 s	26	58	110	460	920

(b) Evaluate $\int_{0}^{1} \sqrt{1+x^{3}}$ dx taking $\mathrm{h}=0.1$ using Simpson's $3 / 8^{\text {th }}$ rule. $[8+7]$
7. (a) Given $\frac{d y}{d x}=\frac{x^{2}}{x^{2}+1}$ with $\mathrm{y}(\mathrm{o})=0$ use Picard's method second approximation to Obtain y and find $\mathrm{y}(1)$
(b) Solve $y^{1}=x y+y^{2}, y(o)=1$ by R-K method fourth order and hence find $y(o .1)$, $\mathrm{y}(\mathrm{o} .2)$
$[8+7]$
8. (a) Fit a curve of the type $\mathrm{y}=\mathrm{ae}^{b x}$ to the data by the method of least squares

x	0	1	2	3	4	5	6	7	8
y	20	30	52	77	135	211	326	550	1052

(b) Fit a least square parabola $\mathrm{y}=\mathrm{a}+\mathrm{bx}+\mathrm{cx}^{2}$ to the following data

x	0.0	0.2	0.4	0.7	0.9	1
y	1.016	0.768	0.648	0.401	0.272	0.193

I B.Tech I Semester Regular Examinations, February 2013 MATHEMATICAL METHODS
 (Common to Civil Engineering, Electrical \& Electronics Engineering, Computer Science \& Engineering, Electronics \& Instrumentation Engineering, Aeronautical Engineering, Bio-Technology and Automobile Engineering)

Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find rank of A using Echelon form $A=\left[\begin{array}{ccccc}3 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 7 & 8 & 9 \\ 10 & 11 & 12 & 13 & 14 \\ 15 & 16 & 17 & 18 & 19\end{array}\right]$
(b) Find rank of A using Normal form $A=\left[\begin{array}{cccc}1 & -2 & 3 & 4 \\ -2 & 4 & -1 & -3 \\ 1 & 2 & 7 & 6\end{array}\right] \quad[7+8]$
2. Verify Cayley - Hamilton theorem, find A^{-1} and A^{3} if $A=\left[\begin{array}{ccc}3 & 1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 5\end{array}\right]$
3. Reduce the quadratic form $3 x^{2}-2 y^{2}-z^{2}-4 x y+12 y z-+8 z x$ to canonical form by orthogonal transformation .Also find its nature, rank index signature and the transformation which transforms quadratic form to canonical from.
4. (a) Find a real root the equation $1+\tan ^{-1}(x)-x=0$ near $\mathrm{x}=1$ correct up to 4 decimal places using iteration method
(b) By using bisection method find an approximate root of the equation $\sin x=$ $\frac{1}{x}$ that lies between $\mathrm{x}=1$ and $\mathrm{x}=1.5$ (measured in radians). Carryout computation upto $7^{\text {th }}$ stage.
5. (a) The values of annuities for certain ages are given for the following ages. Find the annuity at age $27 \frac{1}{2}$ using Gauss's forward interpolation formula

Age:	25	26	27	28	29
Annuity:	16.195	15.919	15.630	15.326	15.006

(b) Find $\mathrm{f}(2.5)$ using Newton's forward formula from the following table

X	0	1	2	3	4	5	6
Y	0	1	16	81	256	625	1296

6. (a) The velocity v of a particle moving in a straight line covers at distance x in time t . They are related as given in the following table. Find $f^{\prime}(15)$

X	0	10	20	30	40
Y	45	60	65	54	42

(b) Evaluate $\int_{0}^{1} x^{3} \mathrm{dx}$ with five sub-intervals by Trapezoidal rule. [8+7]
7. Solve by Milne's predictor corrector method to find $\mathrm{y}(0.8)$ from $\frac{d y}{d x}=1+y^{2}, \mathrm{y}(0)=0$ by obtaining the initial values $\mathrm{y}(\mathrm{o} .2), \mathrm{y}(\mathrm{o} .4), \mathrm{y}(\mathrm{o} .6)$ from R-K method.
8. (a) Fit a power curve $\mathrm{y}=\mathrm{ax}^{b}$ to the following data

x	1	2	3	4	5
y	0.5	2	4.5	8	12.5

(b) Fit a straight line of the form $y=a+b x$ to the following data

x	0	5	10	15	20
y	7	-11	16	20	26

Set No. 4

I B.Tech I Semester Regular Examinations, February 2013 MATHEMATICAL METHODS
 (Common to Civil Engineering, Electrical \& Electronics Engineering, Computer Science \& Engineering, Electronics \& Instrumentation Engineering, Aeronautical Engineering, Bio-Technology and Automobile Engineering)

Time: 3 hours
Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Find rank of $A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3\end{array}\right]$ using Echelon form
(b) Solve by Gauss Elimination method $2 \mathrm{x}+\mathrm{y}+\mathrm{z}=10,3 \mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=18, \mathrm{x}+4 \mathrm{y}+9 \mathrm{z}=16$
2. Verify Cayley - Hamilton theorem and find A^{-1} if $A=1 / 4\left[\begin{array}{ccc}2 & -1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$
3. Reduce the quadratic form $\mathrm{X}^{T} \mathrm{AX}$ to canonical form for the matrix $\mathbf{A}=$

$$
\left[\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right]
$$

by finding its Eigen values and Eigen vectors. Also find the corresponding linear transformation and its nature rank and signature.
4. (a) Using Newton-Raphson's Method, find a positive root of $\operatorname{Cos} \mathrm{x}-\mathrm{x} \mathrm{e}^{x}=0$
(b) Find a real root of $\mathrm{f}(\mathrm{x})=\mathrm{x}+\tan \mathrm{x}-1=0$ in the interval $(0,0.5)$ by using bisection method.
5. (a) Applying Gauss backward interpolation formula find y when $\mathrm{x}=25$ for the following data

X:	20	24	28	32
Y:	2854	3162	3544	3991

(b) Using Largrange's formula calculate $f(3)$ from the following table.

X	0	1	2	4	5	6
$\mathrm{~F}(\mathrm{x})$	1	14	15	5	6	19

6. (a) From the following table find y^{\prime} at $x=30$

x	30	35	40	45	50
y	15.9	14.9	14.1	13.3	12.5

(b) Evaluate $\int_{0}^{\pi / 2} e^{\sin x}$ dx taking $\mathrm{h}=\pi / 6$
7. (a) Solve $\mathrm{y}^{1}=\mathrm{xy}^{1 / 3}, \mathrm{y}(1)=1$ by Taylor series method and find $\mathrm{y}(1.1), \mathrm{y}(1.2)$
(b) Find an approximate value of y for $\mathrm{x}=0.1,0.2$ if $\mathrm{y}^{1}=\mathrm{x}+\mathrm{y}$ and $\mathrm{y}(1)=1$ by Picard's method and compare the solution with exact solution.
8. (a) Fit a power curve $\mathrm{y}=\mathrm{ax}^{b}$ to the following data

x	5	6	7	8	9	10
y	133	55	23	7	2	2

(b) Fit a curve of the type $y=a+b x+c x^{2}$ to the following data

x	0	1	2	3	4	5	6
y	14	18	23	29	36	40	46

