I B.Tech I Semester Regular/Supplementary Examinations January 2012 MATHEMATICAL METHODS

(Common to Computer Science Engineering, Electrical & Electronic Engineering, Civil Engineering, Electronics & Instrumentation Engineering, Aeronautical Engineering, **Bio-Technology & Automobile Engineering.**)

Time: 3 hours

3.

Answer any FIVE Questions All Questions carry equal marks *******

- Reduce the matrix $\begin{bmatrix} 8 & 1 & 3 & 6 \\ 0 & 3 & 2 & 2 \\ -8-1 & -3 & 4 \end{bmatrix}$ in to its normal form and hence find its Rank. 1.(a)
 - (b) Solve the following system of equations using gauss elimination method $2x_1+x_2+2x_3+x_4=6$, $6x_1-x_2+6x_3+12x_4=36$

 $4x_1+3x_2+3x_3-3x_4=1, 2x_1+2x_2-x_3+x_4=10.$

- Prove that the sum of the Eigen values of a square matrix is equal to its trace of the 2.(a) matrix and Product of the Eigen values is equal to its determinant
 - Verify cayley Hamilton theorem and hence find its inverse of the matrix (b)

 $\mathbf{A} = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{1} \\ \mathbf{2} & \mathbf{1} & -\mathbf{1} \\ \mathbf{1} & -\mathbf{1} & \mathbf{1} \end{bmatrix}.$ Reduce the quadratic from $x^2+3y^2+3z^2+4t^2+4xy-2xz+6xt+4yt+2yz$ the canonical from and hence find the nature, index, rank, and signature of the quadratic from.

- Find a root of the equation $x^3 x 4 = 0$ using regula false method. 4.(a)
- (b) Find a real root of the equation $xe^{x} - \cos x = 0$ using Newton-Raphson method.
- Evaluate (i) $\Delta \tan^{-1}\left(\frac{n-1}{n}\right) = \tan^{-1}\left(\frac{1}{2n^2}\right)(ii)\Delta^2 \sin(px+q)(iii)\Delta^n e^{ax+b}$ 5.(a)
 - Appling Newton's forward interpolation formula , compute the value of $\sqrt{5.5}$, given that (b) $\sqrt{5}$ =2.236, $\sqrt{6}$ = 2.449, $\sqrt{7}$ = 2.646, $\sqrt{8}$ = 2.828

Page 1 of 2

[7M+8M]

[7M+8M]

[7M+8M]

[15M]

[7M+8M]

Max Marks: 75

www.FirstRanker.com

Code No: R10107 / R10

6.(a) Find the first derivative of the function tabulated below at the point x=1.5.

Х	1.5	2.0	2.5	3.0	3.5	4.0
f(x)	3.375	7.0	13.625	24	38.87	59

(b) Evaluate $\int_{0}^{1} e^{-x^2} dx$ using

(i) Simpson's 1/3 rule taking h=0.2 (ii) Trapezoidal rule.

[7M+8M]

7. (a) Find y(0.2) using modified Euler's method given that

$$\frac{dy}{dx} = x - y, \ y(0) = 1, \ with \ h = 0.1$$

(b) Find y (0.1) and y (0.2) using Runge -Kutta method fourth order given that $y' = xy + y^2$, y (0) =1.

[7M+8M]

8.(a) Fit a power function to the following data and estimate y at x=12.

Price	20	16	10	11	14
Demand	22	14	120	89	56

(b) Fit a least square parabola to the following data.

x	0	0.2	0.4	0.7	0.9	1.0
у	1.016	0.768	0.648	0.401	0.272	0.193

[7M+8M]

Set No. 1

Code No: R10107 / R10

I B.Tech I Semester Regular/Supplementary Examinations January 2012 MATHEMATICAL METHODS

(Common to Computer Science Engineering, Electrical & Electronic Engineering, Civil Engineering, Electronics & Instrumentation Engineering, Aeronautical Engineering, Bio-Technology & Automobile Engineering.)

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks *******

1.(a) Reduce the matrix to Echelon form and hence find its Rank

(b) Solve the equations $10x_1 + x_2 + x_3 = 12, x_1 + 10x_2 - x_3 = 10$ and $x_1 - 2x_2 + 10x_3 = 9$ by Gauss Joldan method.

 $A = \begin{vmatrix} 1 & -2 & -1 & -4 & 2 \\ 0 & 1 & -1 & 3 & 1 \\ 4 & -7 & 4 & -4 & 5 \end{vmatrix}$

2.(a) Find the Eigen Values and Eigen vectors of A⁻¹. Where $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$

(b) State and Prove Cayley – Hamilton theorem.

- 3. Reduce the Quadratic form $3x^2 + 3y^2 + 3z^2 + 2xy + 2xz 2yz$ into sum of squares form by an orthogonal transformation and hence find nature, rank, index and signature. [15M]
- 4.(a) Find a real root of $xe^x = 2$ using Regula–Falsi method.
 - (b) Find real root of the equation $1 + \tan^{-1} x x = 0$ near x = 1 correct up to 4 decimal places using iteration method.
- 5.(a) Find f (1.28). If f (1.15) = 1.0723, f (1.20) = 1.0954, f (1.25) = 1.1180, and f (1.30) = 1.1401.
 - (b) Find the cubic polynomial which takes the values

x	0	1	2	5	
f(x)	2	3	12	147	

Page 1 of 2

using Lagranges interpolation formula.

[7M+8M]

[7M+8M]

[7M+8M]

[7M+8M]

Set No. 2

Max Marks: 75

Code No: R10107 / R10

Set No. 2

6.(a) Find the values of f'(1) using the data.

x	1.0	1.5	2.0	2.5	3.0
f(x)	27	106.75	324	783.75	1621

$$\int_{0}^{\pi/2} e^{\sin x} dx \text{ taking h} = \pi/6$$

(b) Evaluate \int_{0}^{1} using

(i) Trapezoidal rule.(ii)Simpson's 1/3rule.

[7M+8M]

7. Find the solution of $\frac{dy}{dx} = x - y$, y(0) = 1. at x = 0.4 and h = 0.1 using Miline's method. Use Euler's modified method to evaluate y(0.1), y(0.2) and y(0.3).

[15M]

8.(a) Using least square method fit a second degree polynomial estimate y at x = 6.5

x	0	1	2	3	4	5	6	7	8
у	12	10.5	10	8	7	8	7.5	8.5	9

(b) Fit a power curve of the form $y(x) = ax^b$ to the data.

x	1	2	3	4	5	6
y	4.0	5.7	6.9	8.0	8.9	9.8

[7M+8M]

Code No: R10107 / R10 I B.Tech I Semester Regular/Supplementary Examinations January 2012 MATHEMATICAL METHODS

(Common to Computer Science Engineering, Electrical & Electronic Engineering, Civil Engineering, Electronics & Instrumentation Engineering, Aeronautical Engineering, **Bio-Technology & Automobile Engineering.**)

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

Find the non –singular matrices P&Q such that PAQ is in the normal from where 1.(a)

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 6 & -1 \\ 1 & 4 & 5 & 1 \\ 1 & 5 & 4 & 3 \end{bmatrix}$$

(b) Solve x + 2y + z = 3, 2x + 3y + 2z = 5, 3x - 5y + 5z = 2, 3x + 9y - z = 4.

[7M+8M]

Find the Eigen Values and the corresponding Eigen vectors of the matrix 2.(a)

$$\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$

State Cayley – Hamilton theorem. Find the characteristic Equation of the matrix (b) $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ and hence find the matrix represented by

$$A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I.$$

3.(a) Reduce the following Quadratic from to canonical form by diagonalization

$$5x^2 + 3y^2 + 3z^2 - 4yz - 4zx - 2xy$$

(b) Using Lagrange's reduction, transform

 $x_1^2 - 4x_2^2 + 5x_3^2 + 2x_1x_2 - 4x_1x_3 + 2x_4^2 - 6x_3x_4$ to canonical form and hence find rank, nature, index and signature.

[7M+8M]

- 4.(a) Using Bisection method find a square root of 26 correct up to three decimal places.
- (b) Using Newton Raphson method compute $\sqrt{41}$ correct to Four decimal places.

[7M+8M]

Page 1 of 2

www.FirstRanker.com

Set No. 3

Max Marks: 75

www.FirstRanker.com

Code No: R10107 / R10

www.FirstRanker.com

Page 2 of 2

- 5.(a) Using Newton's interpolation formula given $\sin 45^0 = 0.7071$ $\sin 50^0 = 0.7660$, $\sin 55^0 = 0.8192$ and $\sin 60^0 = 0.8660$ find $\sin 52^0$.
- 6.(a) Find First and second derivatives from the data near x = 1.5 using central forward difference.

Х	1	1.2	1.4	1.6	1.8	2
у	2.72	3.32	4.06	4.95	6.05	7.39
		6				

- (b) Using Simpson's rule. Evaluate $\int_{0}^{0} \frac{dx}{1+x^2}$ dividing the range into 6 equal parts.
- 7. Use Milne's Method to find y (0.8) from $y^1=1+y^2$, y(0) = 0, find the initial values y(0.2), y(0.4) and y(0.6) From Range Kutta method.
- 8.(a) Fit a least square parabola to the following data

` ´		1 1		U U			
	Х	0	0.2	0.4	0.7	0.9	1.0
	у	1.016	0.768	0.648	0.401	0.272	0.193
(b)	Fit an exp	onential curv	e of the form	$\mathbf{y}(\mathbf{x}) = ae^{bx}$	to the follow	ing data	

,	I II ull C	superioritian can v	e of the form y	$(\mathbf{x}) = \mathbf{u}\mathbf{e}$ to the	iono wing dutu	
	Х	1	2	3	4	5
	у	2.600	3.300	4.200	5.400	6.900

[7M+8M]

[7M+8M]

[7M+8M]

[15M]

Set No. 4 Code No: R10107 / R10 I B.Tech I Semester Regular/Supplementary Examinations January 2012 **MATHEMATICAL METHODS** (Common to Computer Science Engineering, Electrical & Electronic Engineering, Civil Engineering, Electronics & Instrumentation Engineering, Aeronautical Engineering, **Bio-Technology & Automobile Engineering.**) **Time: 3 hours** Max Marks: 75 **Answer any FIVE Questions** All Questions carry equal marks ******* 1.(a) Find the values of a and b for which the equations x + y + z = 3, x + 2y + 2z = 6, x + ay + 3z = b have (i) no solution (ii) infinitely number of solutions (iii) unique solutions. (b) Solve the following system of equations using Gauss – Seidel Iteration Method 27x + 6y - z = 85, 6x + 15y + 2z = 72, x + y + 54z = 110. [7M+8M] Prove that the two Eigen vectors corresponding to the two different Eigen values are 2.(a) linearly independent. $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ Diagonalize the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ and find A^4 using the model matrix. (b) [7M+8M] Reduce the Quadratic form to canonical form $3x^2+2y^2-4xz$ by using orthogonal 3.(a) transformation. Using Lagrange's Reduction Reduce the Quadratic Form (b) $x_1^2 + 4x_2^2 + x_3^2 - 4x_1x_2 + 2x_3x_1 - 4x_2x_3$ to canonical form. Also find the nature, rank, index, signature. [7M+8M] Using Bisection Method find the root between 2&3 of the equation $x^4-x^3-2x^2-6x-4=0$ up 4.(a) to three decimals using iteration method find an approximate root of the equation x^4 -x-13=0. (b) [7M+8M] 5.(a) Find log 58.75 from the following data. 40 45 50 55 60 65 Х 1.60206 1.65321 1.69897 1.74036 1.77815 1.81291 log x Using Newton's backward interpolation formula. (b) Using Gauss forward interpolation formula find the value of f(25)from the following data f(20) = 24, f(24) = 32, f(28) = 35, f(32) = 40. [7M+8M]

Page 1 of 2

www.FirstRanker.com

Code No: R10107 / R10

Set No. 4

6.(a) find the values of $\cos(1.74)$ from the following data.

Х	1.7	1.74	1.78	1.82	1.86
Sin x	0.9857	0.9916	0.9781	0.9691	0.9584

(b) Evaluate $\int_{0}^{\Pi/2} \sqrt{\sin \theta} d\theta$ using (i) Simpson's 1/3 rule (ii) Simpson's 1/8 rule taking n = 6

[7M+8M]

7.(a) solve the differential equation $\frac{dy}{dx} = \frac{1}{x^2 + y}$, y(4) = 4 and compute y(4.2) & y(4.4) using

Taylor's series method.

(b) solve $y' = y - x^2$, y(0) = 1 by Picard's method up to the fourth approximation hence find the value of y(0.1), y(0.2).

[7M+8M]

8.(a) Using least square method, fit a second degree polynomial estimate y at x=6.5

υ	1		,	0		/		5	
Х	0	1	2	3	4	5	6	7	8
У	12	10.5	10	8	7	8	7.5	8.5	9

(b) Fit a least square straight line for the following data.

X	1	2	3	4	5	6	
у	6	4	3	5	4	2	

[7M+8M]