I B.Tech I Semester Regular/Supplementary Examinations January 2012 MATHEMATICAL METHODS
(Common to Computer Science Engineering, Electrical \& Electronic Engineering, Civil Engineering, Electronics \& Instrumentation Engineering, Aeronautical Engineering, Bio-Technology \& Automobile Engineering.)
Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1.(a) Reduce the matrix $\left[\begin{array}{cccc}8 & 1 & 3 & 6 \\ 0 & 3 & 2 & 2 \\ -8 & -1 & -3 & 4\end{array}\right]$ in to its normal form and hence find its Rank.
(b) Solve the following system of equations using gauss elimination method $2 x_{1}+x_{2}+2 x_{3}+x_{4}=6,6 x_{1}-x_{2}+6 x_{3}+12 x_{4}=36$
$4 x_{1}+3 x_{2}+3 x_{3}-3 x_{4}=1,2 x_{1}+2 x_{2}-x_{3}+x_{4}=10$.
[7M+8M]
2.(a) Prove that the sum of the Eigen values of a square matrix is equal to its trace of the matrix and Product of the Eigen values is equal to its determinant
(b) Verify cayley -Hamilton theorem and hence find its inverse of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & 1 \\
2 & 1 & -1 \\
1 & -1 & 1
\end{array}\right] .
$$

3. Reduce the quadratic from $x^{2}+3 y^{2}+3 z^{2}+4 t^{2}+4 x y-2 x z+6 x t+4 y t+2 y z$ the canonical from and hence find the nature, index, rank, and signature of the quadratic from.
[15M]
4.(a) Find a root of the equation $x^{3}-x-4=0$ using regula false method.
(b) Find a real root of the equation $x e^{x}-\cos x=0$ using Newton-Raphson method.
[7M+8M]
5.(a) Evaluate (i) $\Delta \tan ^{-1}\left(\frac{n-1}{n}\right)=\tan ^{-1}\left(\frac{1}{2 n^{2}}\right)(i i) \Delta^{2} \sin (p x+q)(i i i) \Delta^{n} e^{a x+b}$
(b) Appling Newton's forward interpolation formula, compute the value of $\sqrt{5.5}$, given that $\sqrt{5}=2.236, \sqrt{6}=2.449, \sqrt{7}=2.646, \sqrt{8}=2.828$

Page 1 of 2

Code No: R10107 / R10

Set No. 1

6.(a) Find the first derivative of the function tabulated below at the point $x=1.5$.

x	1.5	2.0	2.5	3.0	3.5	4.0
$\mathrm{f}(\mathrm{x})$	3.375	7.0	13.625	24	38.87	59

(b) Evaluate $\int_{0}^{1} e^{-x^{2}} d x$ using
(i) Simpson's $1 / 3$ rule taking $\mathrm{h}=0.2$ (ii) Trapezoidal rule.
[7M+8M]
7. (a) Find $y(0.2)$ using modified Euler's method given that

$$
\frac{d y}{d x}=x-y, y(0)=1, \text { with } h=0.1
$$

(b) Find y (0.1) and $y(0.2)$ using Runge -Kutta method fourth order given that

$$
\mathrm{y}^{\prime}=\mathrm{xy}+\mathrm{y}^{2}, \mathrm{y}(0)=1 .
$$

[7M+8M]
8.(a) Fit a power function to the following data and estimate y at $\mathrm{x}=12$.

Price	20	16	10	11	14
Demand	22	14	120	89	56

(b) Fit a least square parabola to the following data.

x	0	0.2	0.4	0.7	0.9	1.0
y	1.016	0.768	0.648	0.401	0.272	0.193

Page 2 of 2

Code No: R10107 / R10

Set No. 2

I B.Tech I Semester Regular/Supplementary Examinations January 2012

 MATHEMATICAL METHODS(Common to Computer Science Engineering, Electrical \& Electronic Engineering, Civil
Engineering, Electronics \& Instrumentation Engineering, Aeronautical Engineering, Bio-Technology \& Automobile Engineering.)

Time: 3 hours

Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1.(a) Reduce the matrix to Echelon form and hence find its Rank

$$
A=\left[\begin{array}{ccccc}
2 & -4 & 3 & -1 & 0 \\
1 & -2 & -1 & -4 & 2 \\
0 & 1 & -1 & 3 & 1 \\
4 & -7 & 4 & -4 & 5
\end{array}\right]
$$

(b) Solve the equations

$$
10 x_{1}+x_{2}+x_{3}=12, x_{1}+10 x_{2}-x_{3}=10 \text { and } x_{1}-2 x_{2}+10 x_{3}=9 \text { by Gauss Joldan method. }
$$

2.(a) Find the Eigen Values and Eigen vectors of A^{-1}. Where

$$
A=\left[\begin{array}{ccc}
-2 & 2 & -3 \\
2 & 1 & -6 \\
-1 & -2 & 0
\end{array}\right]
$$

(b) State and Prove Cayley - Hamilton theorem.
[7M+8M]
3. Reduce the Quadratic form $3 x^{2}+3 y^{2}+3 z^{2}+2 x y+2 x z-2 y z$ into sum of squares form by an orthogonal transformation and hence find nature, rank, index and signature.
4.(a) Find a real root of $x e^{x}=2$ using Regula-Falsi method.
(b) Find real root of the equation $1+\tan ^{-1} x-x=0$ near $x=1$ correct up to 4 decimal places using iteration method.
[7M+8M]
5.(a) Find $\mathrm{f}(1.28)$. If $\mathrm{f}(1.15)=1.0723, \mathrm{f}(1.20)=1.0954, \mathrm{f}(1.25)=1.1180$, and $\mathrm{f}(1.30)=1.1401$.
(b) Find the cubic polynomial which takes the values

x	0	1	2	5
$f(x)$	2	3	12	147

using Lagranges interpolation formula.
[7M+8M]

Page 1 of 2

Code No: R10107 / R10

Set No. 2
6.(a) Find the values of $f^{\prime}(1)$ using the data.

x	1.0	1.5	2.0	2.5	3.0
$f(x)$	27	106.75	324	783.75	1621

(b) Evaluate $\int_{0}^{\pi / 2} e^{\sin x} . d x$ taking $\mathrm{h}=\pi / 6$ using
(i) Trapezoidal rule.
(ii)Simpson's $1 / 3$ rule.
[7M+8M]
7. Find the solution of $\frac{d y}{d x}=x-y, y(0)=1$. at $\mathrm{x}=0.4$ and $\mathrm{h}=0.1$ using Miline's method. Use Euler's modified method to evaluate $y(0.1), y(0.2)$ and $y(0.3)$.
[15M]
8.(a) Using least square method fit a second degree polynomial estimate y at $\mathrm{x}=6.5$

x	0	1	2	3	4	5	6	7	8
y	12	10.5	10	8	7	8	7.5	8.5	9

(b) Fit a power curve of the form $y(x)=a x^{b}$ to the data.

x	1	2	3	4	5	6
y	4.0	5.7	6.9	8.0	8.9	9.8

[7M+8M]

Page 2 of 2

Set No. 3

I B.Tech I Semester Regular/Supplementary Examinations January 2012 MATHEMATICAL METHODS
 (Common to Computer Science Engineering, Electrical \& Electronic Engineering, Civil Engineering, Electronics \& Instrumentation Engineering, Aeronautical Engineering, Bio-Technology \& Automobile Engineering.)

Time: 3 hours
Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks

1.(a) Find the non -singular matrices $\mathrm{P} \& \mathrm{Q}$ such that P A Q is in the normal from where

$$
A=\left[\begin{array}{cccc}
1 & 3 & 6 & -1 \\
1 & 4 & 5 & 1 \\
1 & 5 & 4 & 3
\end{array}\right]
$$

(b) Solve $\mathrm{x}+2 \mathrm{y}+\mathrm{z}=3,2 \mathrm{x}+3 \mathrm{y}+2 \mathrm{z}=5,3 \mathrm{x}-5 \mathrm{y}+5 \mathrm{z}=2,3 \mathrm{x}+9 \mathrm{y}-\mathrm{z}=4$.
[7M+8M]
2.(a) Find the Eigen Values and the corresponding Eigen vectors of the matrix

$$
\left[\begin{array}{ccc}
-2 & 2 & -3 \\
2 & 1 & -6 \\
-1 & -2 & 0
\end{array}\right]
$$

(b) State Cayley - Hamilton theorem. Find the characteristic Equation of the matrix

$$
\begin{array}{r}
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 2
\end{array}\right] \text { and hence find the matrix represented by } \\
\qquad A^{8}-5 A^{7}+7 A^{6}-3 A^{5}+A^{4}-5 A^{3}+8 A^{2}-2 A+I
\end{array}
$$

[7M+8M]
3.(a) Reduce the following Quadratic from to canonical form by diagonalization

$$
6 x^{2}+3 y^{2}+3 z^{2}-4 y z-4 z x-2 x y
$$

(b) Using Lagrange's reduction, transform
$x_{1}^{2}-4 x_{2}^{2}+5 x_{3}^{2}+2 x_{1} x_{2}-4 x_{1} x_{3}+2 x_{4}^{2}-6 x_{3} x_{4}$ to canonical form and hence find rank, nature, index and signature.
[7M+8M]
4.(a) Using Bisection method find a square root of 26 correct up to three decimal places.
(b) Using Newton Raphson method compute $\sqrt{41}$ correct to Four decimal places.

Page 1 of 2

5.(a) Using Newton's interpolation formula given $\sin 45^{\circ}=0.7071$

$$
\sin 50^{\circ}=0.7660, \sin 55^{\circ}=0.8192 \text { and } \sin 60^{\circ}=0.8660 \text { find } \sin 52^{\circ}
$$

(b) Find $y(-2) \& y(1.5)$ from the following data using Lagrange's interpolation formula.

x	-4	-1	0	2	5
$\mathrm{f}(\mathrm{x})$	1245	33	5	9	1335

[7M+8M]
6.(a) Find First and second derivatives from the data near $x=1.5$ using central forward difference.

x	1	1.2	1.4	1.6	1.8	2
y	2.72	3.32	4.06	4.95	6.05	7.39

(b) Using Simpson's rule. Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ dividing the range into 6 equal parts.
[7M+8M]
7. Use Milne's Method to find $y(0.8)$ from $y^{\prime}=1+y^{2}, y(0)=0$, find the initial values $y(0.2), y(0.4)$ and $y(0.6)$ From Range Kutta method.
8.(a) Fit a least square parabola to the following data

x	0	0.2	0.4	0.7	0.9	1.0
y	1.016	0.768	0.648	0.401	0.272	0.193

(b) Fit an exponential curve of the form $y(x)=\mathrm{ae}^{\mathrm{bx}}$ to the following data

x	1	2	3	4	5
y	2.600	3.300	4.200	5.400	6.900

Code No: R10107 / R10

Set No. 4
I B.Tech I Semester Regular/Supplementary Examinations January 2012 MATHEMATICAL METHODS
(Common to Computer Science Engineering, Electrical \& Electronic Engineering, Civil Engineering, Electronics \& Instrumentation Engineering, Aeronautical Engineering, Bio-Technology \& Automobile Engineering.)
Time: 3 hours
Max Marks: 75

Answer any FIVE Questions
 All Questions carry equal marks

1.(a) Find the values of a and b for which the equations $x+y+z=3, x+2 y+2 z=6$, $x+a y+3 z=b$ have
(i) no solution (ii) infinitely number of solutions (iii) unique solutions.
(b) Solve the following system of equations using Gauss - Seidel Iteration Method

$$
27 x+6 y-z=85,6 x+15 y+2 z=72, x+y+54 z=110
$$

[7M+8M]
2.(a) Prove that the two Eigen vectors corresponding to the two different Eigen values are linearly independent.
(b) Diagonalize the matrix $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$ and find A^{4} using the model matrix.
[7M+8M]
3.(a) Reduce the Quadratic form to canonical form $3 x^{2}+2 y^{2}-4 x z$ by using orthogonal transformation.
(b) Using Lagrange's Reduction Reduce the Quadratic Form $x_{1}^{2}+4 x_{2}^{2}+x_{3}^{2}-4 x_{1} x_{2}+2 x_{3} x_{1}-4 x_{2} x_{3}$ to canonical form. Also find the nature, rank, index, signature.
[7M+8M]
4.(a) Using Bisection Method find the root between $2 \& 3$ of the equation $x^{4}-x^{3}-2 x^{2}-6 x-4=0$ up to three decimals
(b) using iteration method find an approximate root of the equation $\mathrm{x}^{4}-\mathrm{x}-13=0$.
[7M+8M]
5.(a) Find $\log 58.75$ from the following data.

x	40	45	50	55	60	65
$\log \mathrm{x}$	1.60206	1.65321	1.69897	1.74036	1.77815	1.81291

Using Newton's backward interpolation formula.
(b) Using Gauss forward interpolation formula find the value of $f(25)$
from the following data $\mathrm{f}(20)=24, \mathrm{f}(24)=32, \mathrm{f}(28)=35, \mathrm{f}(32)=40$.
6.(a) find the values of \cos (1.74) from the following data.

x	1.7	1.74	1.78	1.82	1.86
$\operatorname{Sin} \mathrm{x}$	0.9857	0.9916	0.9781	0.9691	0.9584

(b) Evaluate $\int_{0}^{\Pi / 2} \sqrt{\sin \theta} d \theta$ using
(i) Simpson's $1 / 3$ rule
(ii) Simpson's $1 / 8$ rule taking $n=6$
7.(a) solve the differential equation $\frac{d y}{d x}=\frac{1}{x^{2}+y}, y(4)=4$ and compute $y(4.2) \& y(4.4)$ using Taylor's series method.
(b) solve $y^{\prime}=y-x^{2}, y(0)=1$ by Picard's method up to the fourth approximation hence find the value of $y(0.1), y(0.2)$.
[7M+8M]
8.(a) Using least square method, fit a second degree polynomial estimate y at $\mathrm{x}=6.5$

x	0	1	2	3	4	5	6	7	8
y	12	10.5	10	8	7	8	7.5	8.5	9

(b) Fit a least square straight line for the following data.

x	1	2	3	4	5	6
y	6	4	3	5	4	2

Page 2 of 2

