Page 1 of 2.

www.FirstRanker.com

- Set No 1
- 5.(a) Find the Lagrange's polynomial for the following data and using it find the value of i(t) when t = 1.6.

t	1.2	2.	2.5	3.
i(t)	1.36	0.58	0.34	0.2

(b) The approximate value of sin (1.5) is computed from the three terms of the series $Sin(x) = x \frac{x^3}{3!} + \frac{x^3}{5!} + \cdots$ is found to be $y_3 = 1.00078$, while the exact value is $y_e = 0.997495$. Find the absolute error, relative error and percentage errors of y_3 .

[8M + 7M]

6.(a) The population of a certain town is shown in the following table:

Year	1931	1941	1951	1961	1971
Population y(x)	40.62	60.80	79.95	103.56	132.65

Find the growth rate of the population in the year 1931.

(b) The Velocity v of a particle given at various times are recorded in the following table:

t (seconds)	0	2	4	6	8	10	12
υ(mps)	4	6	16	34	60	94	136

Find

(i) The distance moved by the particle in 12 seconds and

(ii) The acceleration at t = 2 seconds.

[7M + 8M]

- 7.(a) Using Runge Kutta fourth order method. Find y when x = 1.2 in steps of 0.1 given that $\frac{dy}{dx} = x^2 + y^2$ and y (1) = 1.5.
 - (b) By using Taylor series method, solve $\frac{dy}{dx} = dy$, y(0) = 2, to find y (0.2) and compare it with that obtained by the exact solution.

[8M + 7M]

8.(a) Fit an exponential curve of the from $y(x) = ae^{bx}$ to the following data.

X	1	2	3	4	5
У	2.6	3.3	4.2	5.4	6.9

(b) Fit an exponential model $y(x) = a e^{bx}$ to the following data

Х	0	1	2	3	4	5
У	0.500	0.485	0.471	0.457	0.443	0.430

[8M + 7M]

Page 2 of 2.

Subject Code-: R10107/R10Set No - 2I B.Tech I Semester Supplementary Examinations June - 2012
MATHEMATICAL METHODS(Common to Computer Science & Engineering, Electrical & Electronic Engineering,
Bio-Technology, & Automobile Engineering, Aeronautical Engineering,
Bio-Technology, & Automobile Engineering,
Max. Marks : 75Max. Marks : 75Answer any FIVE Questions
All Questions carry equal marks
$$* * * * *$$
1.(a) Find the inverse of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$ operations.(b) Solve the following equations
 $x_1 + 2x_2 + 3x_3 = 0$
 $2x_1 + 3x_2 + 4x_3 = 0$
 $x_1 + x_2 - 2x_3 = 0$ (b) Solve the following equations
 $x_1 + 2x_2 + 3x_3 = 0$
 $2x_1 + 3x_2 + 4x_3 = 0$
 $x_1 + x_2 - 2x_3 = 0$ (b) Show that the matrix $A = \begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$ has less than three Linearly independent eigen
vectors. Is it possible to obtain a similarity transformation that wills diagenalize this
matrix?(b) Show that the matrix $A = \frac{1}{2} \begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \end{bmatrix}$ is orthogonal.(b) Show that the matrix $A = \frac{1}{2} \begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & -1 & 1 \end{bmatrix}$ (c) Show that the matrix $A = \frac{1}{2} \begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & -1 & 1 \end{bmatrix}$ (b) Show that the matrix $A = \frac{1}{2} \begin{bmatrix} -1 & 0 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & -1 & 1 \end{bmatrix}$ (c) Show that the matrix $A = \begin{bmatrix} a + ic & -b + id \\ a + ic & a - ic \end{bmatrix}$ (d) By Lagrange's reduction transform the quadratic form $X^T AX$ to sum of squares form for
 $A = \begin{bmatrix} 2 & 6 & -2 \\ 4 & -2 & 18 \end{bmatrix}$ (b) Show that the matrix $A = \begin{bmatrix} a + ic & -b + id \\ a + ic & a - ic \end{bmatrix}$ is unitary if and only if $a^2 + b^2 + c^2 + d^2 = 1$

with x₀ = 1.0.
(b) Find a real root of f(x) = x sin x - 1 correct up to three decimal places starting with x = 1 by Newton Raphson method.

[8M + 7M]

Page 1 of 2.

5.(a) The values of an elliptic integral

 $K(m) = \int_{0}^{\frac{\pi}{2}} (1 - msin^2\theta)^{-\frac{1}{2}} d\theta$

For certain equidistant values of m are given below. Determine K (0.25) from Newton Backward Difference Formula.

m	0.20	0.22	0.24	0.26	0.28	0.30
K(m)	1.659624	1.669850	1.680373	1.691208	1.702374	1.713889

- (b) Prove the following
 - (i) $\Delta \nabla = \Delta \nabla$ (ii) $\frac{\Delta}{\nabla} - \frac{\nabla}{\Delta} = \Delta + \nabla$ (iii) $\nabla E = E\Delta = \nabla$

[8M + 7M]

Set No - 2

- Find the area bounded by the curve $y = e^{-\frac{x^2}{2}}$, x axis between x = 0 and x = 3 by using 6.(a)
 - Simpson's $\frac{3}{8}$ formula. Deduce Simpson's $\frac{1}{3}$ rule from the Newton Forward Difference Formula and hence use it find $\int_{-1}^{1} \sin x \, dx$ (b) find $\int_0^1 \sin x \, dx$.

Find y (0.1), z (0.1), y (0.2) and z (0.2) from the system of equation 7.(a) $y^1 = x + z$, $z^1 = x - y^2$, given that y(0) = 2 and z(0) = 1 by RK fourth order.

Solve by using first order Runge – Kutta method to find y (0.1) the differential equation (b) $\frac{dy}{dx} = (1 + x^2)y$ and y (0) = 1.

[8M + 7M]

[8M + 7M]

Fit exponential curve of the from $y(x) = ae^{bx}$ to the following data. 8.(a)

Х	2	3	4	5	6	
у	144.0	172.8	207.4	248.8	298.5	

Fit the least square line $y = a_0 + a_1 x$ for the data prints (-1,10), (0,9), (1,7), (2,5), (3,4), (b) (4,3),(5,0) and (6,-1).

[8M + 7M]

Page 2 of 2.

www.FirstRanker.com

Page 1 of 2.

 $[\delta NI + /NI]$

- Set No 3
- 5.(a) The population of a certain village in thousands is given in the following table. By using Central Forward Difference Formula estimate the village population in 1936.

Year	1901	1911	1921	1931	1941	1951
Population	12	15	20	27	39	52
Evaluate						

(b) Evaluate (i) $\Delta \sin(ax + b)$, (ii) $\Delta^2(3e^x)$

[7M + 8M]

6.(a) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ from the data near x = 1.5 using Central Backward Difference formula.

Х	1	1.2	1.4	1.6	1.8	2
у	3.00	6.26	11.07	17.84	26.99	39.00

(b) A curve is observed to pass through the points given in the following table:

X	1.0	1.5	2.0	2.5	3.0	3.5	4.0
у	2	2.4	2.7	2.8	3	2.6	2.1

By using Simpson's rule find the

- (i) The area bounded by the curve and x axis between x = 1 and x = 4
- (ii) The volume of revolution of the area about the x axis.

[7M + 8M]

- 7.(a) Solve by Taylor series expansion the initial value problem $\dot{y} = x + y^2$ for x = 0.2(0.2)0.6 given that y(0) = 0.
 - (b) Apply Euler method to find the solution of $\frac{dy}{dx} = \frac{y-x}{y+x}$, with y(0) = 1 for $0 \le x \le 0.1$ with h = 0.025.

[8M + 7M]

8.(a) Fit a straight line of form $y(x) = a_0 + a_1 x$ to the data

X	1	2	3	4	6	8
у	2.4	3.1	3.5	4.2	5.0	6.0

(b) Find a weighted least square parabola for the following data by choosing the weights 1,4,2,4 and 1 respectively

v	Ο	$\hat{\boldsymbol{\gamma}}$	2	1	5
λ	0	2	3	4	5
У	-1	1	7	17	31

[8M + 7M]

Page 2 of 2.

Page 1 of 2.

Page 2 of 2.

5.(a)	Using Newton Forward Difference Formula estimate $y (0.12)$ from the following data.	
-------	--	--

Х	0.10	0.15	0.20	0.25	0.30
У	0.656	0.522	0.410	0.16	0.240

- (b) Evaluate $\Delta^2 \left[\frac{5x+12}{x^2+5x+6} \right]$ taking the interval of differencing being one unit.
- 6.(a) Evaluate $\Delta^2 \left[\frac{5x+12}{x^2+5x+6} \right]$ taking the interval of differencing being one unit.
- (b) Find the value of $\int_{4}^{5.2} \log_e x$ by dividing the interval in to 12 subintervals using Boole's and Weddle's rule.
- 7.(a) Solve $\frac{dy}{dx} = x + z$ and $\frac{dz}{dx} = x y^2$. Given that y (0) = 2 and z (0) = 1. Find y (0.1), y (0.2), z(0.1) and z (0.2).
 - (b) Using Runge Kutta Second order formula solve the equation $\frac{dy}{dx} = 2 + \sqrt{xy}$ with y (1) = 1 for x = 1 (0.2)1.6.
- 8.(a) Fit a third degree polynomial for the following data

Х	-1	0	1	2	3	
у	1	1	1	7	25	

(b) Find the best of the type $y = ae^{bx}$ to the data provided in the table by using least squares method.

X: 1	5	7 9	12	
Y: 1	0 15	12	15 21	

[8M + 7M]

Set No - 4

[8M + 7M]

[8M + 7M]

[8M + 7M]