#### **Set No - 1** Subject Code-: R10206/R10 I B.Tech II Semester Regular Examinations June - 2012 MATHEMATICAL METHODS

(Common to Electronics & Communication Engineering, Information Technology, Mechanical Engineering, Chemical Engineering, Biomedical Engineering, Electronics & Computer Engineering, Petroleum Technology, & Mining)

**Time: 3 hours** 

Max. Marks: 75

#### Answer any FIVE Questions All Questions carry equal marks

\* \* \* \* \*

- Solve by Gauss Seidel method. 1.(a) 6x + y + z = 1054x + 8y + 3z = 1555x + 4y - 10z = 65
  - (b) Find two non-singular matrices P and Q such that the normal form of A is PAQ where

 $A = \begin{bmatrix} 1 & 3 & 6 & -1 \\ 1 & 4 & 5 & 1 \\ 1 & 5 & 4 & 3 \end{bmatrix}$  hence find its rank.

[8M + 7M]

# Show that the transformation $H = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$ , where $\theta = \frac{1}{2} + \tan^{-1}\frac{2h}{a-b}$ , changes the matrix 2.(a) $C = \begin{bmatrix} a & h \\ h & h \end{bmatrix}$ to the diagonal form $D = H^{-1} CH$ .

Find the eigen values and eigen vectors of A= $\begin{bmatrix} 2 & -2 & -2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ . (b)

[8M + 7M]

- Reduce the Q.F.  $2x_1^2 + 4x_2^2 + 4x_3^2 + 2x_1x_2 2x_1x_3 + 6x_2x_3$  to canonical form and hence Find 3. the nature, rank, index and signature of the Q.F. Also specify the matrix of transformation. [15M]
- Apply Newton Raphson method to find a root of  $x^3 x^2 + x 2 = 0$  correct up to four decimal 4.(a) places starting from  $x_0 = 0$ .
  - Solve  $x^3 = 2x + 5$  for a positive root by iteration method. (b)

[8M + 7M]

#### Page 1 of 2.

#### Subject Code-: R10206/R10

- 5.(a) Prove the relations (i)  $\sum_{k=0}^{n-1} \Delta^2 fk \equiv \Delta fk - \Delta fo$ (ii)  $\Delta(f_i g_i) \equiv f_i \Delta g_i + g_{i+1} \Delta f_i$ (iii)  $\Delta f_i^2 \equiv (f_i + f_{i+1}) \frac{\Delta f_i}{(f_i f_i + 1)}$ (b) Show that  $\Delta^{10}[(1 - x)(1 - 2x^2)(1 - 3x^3)(1 - 4x^4)] = 24 \times 2^{10} \times 10!$  if h = 2. [8M + 7M]
- 6. Evaluate  $\int_0^6 \frac{1}{1+x^2} dx$  using (i) Trapizoidal rule (ii) Simpson's  $\frac{1}{3}$  rule and compare with the result obtained by direct integration.

[8M + 7M]

Set No - 1

- 7.(a) Solve by Taylor series expansion the initial value problem  $\frac{dy}{dx} = y^2 + 1$  with y (0) = 0 to find the values of y at x = 0(0.2)0.6.
  - (b) Solve  $\frac{dy}{dx} = x^2 + y$  with y (0) = 2 by both Picard method and Taylor series method up to third degree terms. Compute y (0.2).

[8M + 7M]

8.(a) A chemical factory wish to study by effective of extraction time on the efficiency given in the table . Fit a straight line to the data by the method of least squares.

| Х | 27 | 45 | 41 | 19 | 3  | 39 | 19 | 49 | 15 | 31 |
|---|----|----|----|----|----|----|----|----|----|----|
| у | 57 | 64 | 80 | 46 | 62 | 72 | 62 | 77 | 57 | 68 |

(b) Obtain a relation of the from  $y = ab^x$  for the following data by the method of least squares.

| Х | ·· | 2   | 3    | 4    | 5    | 6     |
|---|----|-----|------|------|------|-------|
| Y | :  | 8.3 | 15.4 | 33.1 | 65.2 | 127.4 |
|   |    |     |      |      |      |       |
|   |    |     |      |      |      |       |



$$\frac{t^2+6t+1}{(t+1)(t-1)(t-4)(t-6)}$$

[8M + 7M]

Page 1 of 2.

## Subject Code-: R10206/R10

Page 2 of 2.

### 6.(a) The following table gives the values of f(x) at equal intervals of x

| X | 0     | 0.5   | 1.0   | 1.5   | 2.0   |
|---|-------|-------|-------|-------|-------|
| У | 0.399 | 0.352 | 0.242 | 0.129 | 0.054 |
| 2 |       |       |       |       |       |

Evaluate  $\int_0^2 f(x) dx$  using Simpson's rule.

(b) Using Weddle's rule find  $\int_{1}^{7} y \, dx$  for the function tabulated below

| Х    | 1    | 2    | 3    | 4    | 5    | 6    | 7     |      |
|------|------|------|------|------|------|------|-------|------|
| y(x) | 3.95 | 4.07 | 4.18 | 4.30 | 4.42 | 4.54 | 4.67  |      |
|      |      |      |      |      |      |      | [8M + | - 7M |

- 7.(a) Solve  $\frac{dy}{dx} = 2y + 3e^x$  with y (0) = 0 using Taylor series method to find the values of y for x = 0.1 and 0.2.
  - (b) Solve  $\frac{dy}{dx} = x + \sqrt{y}$ , y (0) = 1 by Euler modified method to find y at x = 0.2 and x = 0.4. Also find the solution y(x) at x = 0.2 and x = 0.4 by Euler method by taking h = 0.1. Compare the answers

[7M + 8M]

8.(a) Fit a parabola of the from  $y = a_2x^2 + a_1x + a_0$  to the data x = 1.0 1.5 2.0 2.5 3.0

|       | Х          | 1.0           | 1.5  | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 |
|-------|------------|---------------|------|-----|-----|-----|-----|-----|
|       | У          | 1.1           | 1.3  | 1.6 | 2.0 | 2.7 | 3.4 | 4.1 |
| Fit a | a straight | line to the c | data |     |     |     |     |     |

| (b) | Fit | a straig | tht l | ine to | the | dat | a  |
|-----|-----|----------|-------|--------|-----|-----|----|
|     |     | v        | 1     |        | 3   | 4   | τ. |

| Х | 1   | 3   | 5   | 7   | 9   |
|---|-----|-----|-----|-----|-----|
| У | 1.5 | 2.8 | 4.0 | 4.7 | 6.0 |
|   |     |     |     |     |     |

[8M + 7M]

## Set No - 2

Subject Code-: R10206/R10Set No - 3I B. Tech II Semester Regular Examinations June - 2012  
MATHEMATICAL METHODS(Common to Electronics & Communication Engineering, Information Technology, Mechanical  
Engineering, Chemical Engineering, Petroleum Technology, & Mining)Time: 3 hoursMax. Marks : 75  
Max. Marks : 75  
Max. Marks : 75  
Answer any FIVE Questions  
All Questions carry equal marks  
$$* * * * *$$
1.(a)Solve the system of equations,  
 $x + y + z = 8$   
 $2x + 3y + 2z = 19$   
 $4x + 2y + 3z = 23$  using Gauss – Jordan method.(b)Find the inverse of A using ad joint method where  $A = \begin{bmatrix} 1 & 0 & 9 \\ 2 & 4 & 5 \\ 1 & 2 & 6 \end{bmatrix}$ (a)Show that the matrix  $A = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix}$  satisfies Cayley- Hamilton theorem.(b)Is the matrix  $\begin{bmatrix} 3 & 10 & 5 \\ -2 & 3 & -5 & 7 \end{bmatrix}$  diagonalizable?(a)Find the eigen values and eigen vectors of the matrix  $A = \begin{bmatrix} 6 & -2 & 2 \\ 2 & -1 & 3 \\ 2 & -1 & 3 \end{bmatrix}$   
Hence, reduce the quadratic form  $6x^2 + 3y^2 + 3z^2 - 4xy + 4xz - 2yz$  to its canonical form.(b)Using orthogonal reduction show that the quadratic form  
 $q = 2x_1^2 + 4x_2^2 + 4x_3^2 + 2x_1 x_2 - 2x_1 x_3 + 6x_2 x_3$  is positive semi definite. Also specify non-zero  
 $X = (x_1, x_2, x_3)$  which will make  $q = 0$ .(A)Find a real root of  $f(x) = x^3 - 19$  correct up to three decimal places starting with  $x = 1$  by  
Newton Raphson method.(b)Solve the equation  $x \tan x = -1$  by Regula Falsi method starting with  $a = 2.5$  and  $b = 3$ , correct  
to 3 decimal places.

## Page 1 of 2.

www.jntuworld.com

## Subject Code-: R10206/R10

Set No - 3

5.(a) Define the operations of  $\Delta$ ,  $\nabla$ , and E, and show that

(i)  $\Delta = E\nabla$ 

- (ii)  $\nabla = E^{-1}\Delta$
- (iii)  $E = 1 + \Delta$
- (iv)  $E^{-1} = 1 \nabla$
- (b) For the following data fit a polynomial

| X | 1 | 2 | 3  | 4  |
|---|---|---|----|----|
| У | 2 | 5 | 16 | 41 |

By using Newton Forward and Backward Difference Formulae.

[8M + 7M]

6.(a) A rod is rotating in a plane. The following table gives the angle  $\theta$  (xin radians) through which the rod has turned for various values of time (seconds)

| t | 0.0  | 0.2  | 0.4  | 0.6  | 0.8  | 1.0  |
|---|------|------|------|------|------|------|
| θ | 0.00 | 0.12 | 0.49 | 1.12 | 2.02 | 3.20 |
|   |      |      |      |      |      | 0.0  |

Calculate the angular velocity and the angular acceleration of the rod when t = 0.3 seconds.

(b) A river is 80 meters wide. The depth d in meters at a distance x from the bank is given in the following table. Calculate the cross section of the river using Trapizoidal rule.

| X    | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80  |
|------|----|----|----|----|----|----|----|-----|
| d(x) | 4  | 7  | 9  | 12 | 15 | 14 | 8  | 3   |
|      |    |    |    |    |    |    |    | 503 |

[8M + 7M]

- 7.(a) Use Milne method to find y (0.8) from  $y^1 = 1 + y^2$ , y(0) = 0. Find the initial values y (0.2), y (0.4) and y (0.6) from Runge Kutta method.
  - (b) Apply Milne Predictor Corrector method to find y (0.8), y (1.0) from the equation  $\dot{y} = y x^2$ , y (0) = 1 by obtaining the starting values by Euler method.

[8M + 7M]

- 8.(a) Fit a least square parabola  $y = a + bx + cx^2$  to the data f(-1) = -2, f(0)=1, f(1)=2, f(2)=4.
  - (b) Fit a straight line of the from y = a + bx to the following data.

| X | 50  | 60  | 70  | 80  |
|---|-----|-----|-----|-----|
| у | 205 | 225 | 248 | 274 |

[8M + 7M]

Page 2 of 2.

Subject Code-: R10206/R10Set No - 4I B.Tech II Semester Regular Examinations June - 2012  
MATHEMATICAL METHODS(Common to Electronics & Communication Engineering, Information Technology, Mechanical  
Engineering, Chemical Engineering, Biomedical Engineering, Electronics & Computer  
Engineering, Petroleum Technology, & Mining)Time: 3 hoursMax. Marks : 75Answer any FIVE Questions  
All Questions carry equal marks  
$$* * * * *$$
1.(a)Define rank of a matrix, normal form of a matrix and echelon form of a matrix  
(b)Reduce to echelon form and hence find the rank of the matrix  $A = \begin{bmatrix} 1 & 2 & -4 & 5 \\ 2 & -1 & 3 & 6 \\ 1 & 9 & 7 \end{bmatrix}$   
(7M + 8M]2.Diagonalize the matrix  $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$  and find A<sup>4</sup> using the modal matrix.3.(a)If A and B are Hermitian, then prove that  
(i) AB + BA is Hermitian  
(ii) AB - BA is skew - Hermitian  
(ii) AB - BA is skew - Hermitian  
(i) AB + BA is method find a real root of  $f(x) = 2x^7 + x^5 + 1 = 0$  correct up to two decimal  
places using a = -1, b = 1.(7M + 8M]5.(a)(7M + 8M]5.(a)

- (ii)  $\Delta^n y_x = y_{x+n} C_1^n y_{x+n-1} + C_2^n y_{x+n-2} + (-1)^n y_x$ (iii)  $u_1 + u_2 + \dots + u_n = C_1^n u_0 + C_2^n \Delta u_0 + \dots + \Delta^{n-1} u_0$ .
- (b) Find the Lagrange's interpolating polynomial and using it find y when x = 10, if the values of x and y are given as follows:

| X | 5  | 6  | 9  | 11  |        |
|---|----|----|----|-----|--------|
| У | 12 | 13 | 14 | 16  |        |
|   |    |    |    | [8M | [ + 7M |

Page 1 of 2.

Page 2 of 2.

6.(a) Find the maximum and minimum values of y from the following table:

| Х | 0 | 1 | 2 | 3 | 4  | 5   |
|---|---|---|---|---|----|-----|
| У | 0 | 1 | 0 | 9 | 16 | 225 |
|   |   | 4 |   | 4 |    | 4   |

(b) The following table gives the value of f(x) at equal intervals of x.

| Х | 0     | 0.5   | 1.0   | 1.5   | 2.0   |
|---|-------|-------|-------|-------|-------|
| у | 0.399 | 0.352 | 0.242 | 0.129 | 0.054 |

Evaluate  $\int_0^2 f(x) dx$  using Simpson's rule.

Subject Code-: R10206/R10

- 7.(a) Applying Runge Kutta fourth order method find y (0.2), y (0.4) and y (0.6) Where  $y^1 = -xy^2$ , y(0) = 2. choose step size h = 0.2.
  - (b) Apply Milne Predictor Corrector method to find y (0.4) by obtaining the initial solution of  $\frac{dy}{dx} = y + x^2$ . Y (0) = 2 by Taylor series method.
- 8.(a) Fit a second degree of polynomial to the following data by the method of least squares :

| Х | 0 | 1   | 2   | 3   | 4   |  |
|---|---|-----|-----|-----|-----|--|
| у | 1 | 1.8 | 1.3 | 2.5 | 6.5 |  |

(b) Fit a least square parabola for the data



[8M + 7M]

www.jwjobs.net

[8M + 7M]

[8M + 7M]