Subject Code-: R10206/R10

I B.Tech II Semester Regular Examinations June - 2012 MATHEMATICAL METHODS

(Common to Electronics \& Communication Engineering, Information Technology, Mechanical
Engineering, Chemical Engineering, Biomedical Engineering, Electronics \& Computer Engineering, Petroleum Technology, \& Mining)
Time: $\mathbf{3}$ hours
Max. Marks : 75
Answer any FIVE Questions
All Questions carry equal marks
$* * * * *$
1.(a) Solve by Gauss - Seidel method.
$6 x+y+z=105$
$4 x+8 y+3 z=155$
$5 x+4 y-10 z=65$
(b) Find two non-singular matrices P and Q such that the normal form of A is PAQ where

$$
A=\left[\begin{array}{cccc}
1 & 3 & 6 & -1 \\
1 & 4 & 5 & 1 \\
1 & 5 & 4 & 3
\end{array}\right] \text { hence find its rank. }
$$

$[8 \mathrm{M}+7 \mathrm{M}]$
2.(a) Show that the transformation $\mathrm{H}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$, where $\theta=\frac{1}{2}+\tan ^{-1} \frac{2 h}{a-b}$, changes the matrix $\mathrm{C}=\left[\begin{array}{ll}a & h \\ h & b\end{array}\right]$ to the diagonal form $\mathrm{D}=\mathrm{H}^{-1} \mathrm{CH}$.
(b) Find the eigen values and eigen vectors of $\mathrm{A}=\left[\begin{array}{ccc}2 & -2 & -2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$.
$[8 \mathrm{M}+7 \mathrm{M}]$
3. Reduce the Q.F. $2 x_{1}^{2}+4 x_{2}^{2}+4 x_{3}^{2}+2 x_{1} x_{2}-2 x_{1} x_{3}+6 x_{2} x_{3}$ to canonical form and hence Find the nature, rank, index and signature of the Q.F. Also specify the matrix of transformation.
4.(a) Apply Newton Raphson method to find a root of $x^{3}-x^{2}+x-2=0$ correct up to four decimal places starting from $\mathrm{X}_{0}=0$.
(b) Solve $\mathrm{x}^{3}=2 \mathrm{x}+5$ for a positive root by iteration method.

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

Page 1 of 2.

Subject Code-: R10206/R10

5.(a) Prove the relations
(i) $\sum_{k=0}^{n-1} \Delta^{2} f k \equiv \Delta f k-\Delta f o$
(ii) $\Delta\left(f_{i} g_{i}\right) \equiv f_{i} \Delta g_{i}+g_{i+1} \Delta f_{i}$
(iii) $\Delta f_{i}^{2} \equiv\left(f_{i}+f_{i+1}\right) \frac{\Delta f_{i}}{\left(f_{i} f_{i}+1\right)}$
(b) Show that $\Delta^{10}\left[(1-x)\left(1-2 x^{2}\right)\left(1-3 x^{3}\right)\left(1-4 x^{4}\right)\right]=24 \times 2^{10} \times 10$! if $\mathrm{h}=2$.

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

6. Evaluate $\int_{0}^{6} \frac{1}{1+x^{2}} d x$ using
(i) Trapizoidal rule
(ii) Simpson's $\frac{1}{3}$ rule and compare with the result obtained by direct integration.

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

7.(a) Solve by Taylor series expansion the initial value problem $\frac{d y}{d x}=y^{2}+1$ with $y(0)=0$ to find the values of y at $\mathrm{x}=0(0.2) 0.6$.
(b) Solve $\frac{d y}{d x}=x^{2}+y$ with y $(0)=2$ by both Picard method and Taylor series method up to third degree terms. Compute y (0.2).

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

8.(a) A chemical factory wish to study by effective of extraction time on the efficiency given in the table. Fit a straight line to the data by the method of least squares.

X	27	45	41	19	3	39	19	49	15	31
y	57	64	80	46	62	72	62	77	57	68

(b) Obtain a relation of the from $y=a b^{x}$ for the following data by the method of least squares.

$\mathrm{X}:$	2	3	4	5	6
$\mathrm{Y}:$	8.3	15.4	33.1	65.2	127.4

Subject Code-: R10206/R10

I B.Tech II Semester Regular Examinations June - 2012 MATHEMATICAL METHODS

(Common to Electronics \& Communication Engineering, Information Technology, Mechanical
Engineering, Chemical Engineering, Biomedical Engineering, Electronics \& Computer Engineering, Petroleum Technology, \& Mining)
Time: $\mathbf{3}$ hours
Max. Marks : 75
Answer any FIVE Questions
All Questions carry equal marks
$* * * * *$
1.(a) Solve the system of equations,
$\mathrm{x}+\mathrm{y}+\mathrm{z}=8$
$2 x+3 y+2 z=19$
$4 x+2 y+3 z=23$ using Gauss elimination method
(b) Find the inverse of the matrix A using elementary operations

$$
\mathrm{A}=\left[\begin{array}{cccc}
-1 & -3 & 3 & -1 \\
1 & 1 & -1 & 0 \\
2 & -5 & 2 & -3 \\
-1 & 1 & 0 & 1
\end{array}\right] .
$$

2.(a) Express the matrix adj $[A-\lambda I]$ as a matrix polynomial where $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 1 \\ 0 & 1 & 2\end{array}\right]$.

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

(b) Find the modal matrix P which diagonalizes the matrix $\mathrm{A}=\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$ to diagonal form.
$[8 \mathrm{M}+7 \mathrm{M}]$
3. Reduce the following quadratic form to canonical form by Diagonalization. $6 x^{2}+3 y^{2}+3 z^{2}-4 y z-4 z x-2 x y$.
4.(a) Find a root of the equations by bisection method $\operatorname{Cos} 2 x-x=0$
(b) Assuming that a root of $x^{3}-9 x+1=0$ lies in the interval (2,4), find that root by bisection method correct up to two decimal places.

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

5.(a) If $\mathrm{y}(1)=3, \mathrm{y}(3)=9, \mathrm{y}(4)=30$ and $\mathrm{y}(6)=132$, find the four point Lagrange interpolation polynomial that takes the same values as the function y at the given points.
(b) Use Lagrange's interpolation formula to resolve the following into partial fractions.

$$
\frac{t^{2}+6 t+1}{(t+1)(t-1)(t-4)(t-6)}
$$

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

Page 1 of 2.

Subject Code-: R10206/R10

6.(a) The following table gives the values of $f(x)$ at equal intervals of x

x	0	0.5	1.0	1.5	2.0
y	0.399	0.352	0.242	0.129	0.054

Evaluate $\int_{0}^{2} f(x) d x$ using Simpson's rule.
(b) Using Weddle's rule find $\int_{1}^{7} y d x$ for the function tabulated below

x	1	2	3	4	5	6	7
$\mathrm{y}(\mathrm{x})$	3.95	4.07	4.18	4.30	4.42	4.54	4.67
$[8 \mathrm{M}+7 \mathrm{M}]$							

7.(a) Solve $\frac{d y}{d x}=2 y+3 e^{x}$ with $y(0)=0$ using Taylor series method to find the values of y for $\mathrm{x}=0.1$ and 0.2 .
(b) Solve $\frac{d y}{d x}=x+\sqrt{y}, \mathrm{y}(0)=1$ by Euler modified method to find y at $\mathrm{x}=0.2$ and $\mathrm{x}=0.4$. Also find the solution $y(x)$ at $x=0.2$ and $x=0.4$ by Euler method by taking $h=0.1$. Compare the answers

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

8.(a) Fit a parabola of the from $y=a_{2} x^{2}+a_{1} x+a_{0}$ to the data

x	1.0	1.5	2.0	2.5	3.0	3.5	4.0
y	1.1	1.3	1.6	2.0	2.7	3.4	4.1

(b) Fit a straight line to the data

x	1	3	5	7	9
y	1.5	2.8	4.0	4.7	6.0

Page 2 of 2.

Subject Code-: R10206/R10

I B.Tech II Semester Regular Examinations June - 2012 MATHEMATICAL METHODS

(Common to Electronics \& Communication Engineering, Information Technology, Mechanical
Engineering, Chemical Engineering, Biomedical Engineering, Electronics \& Computer Engineering, Petroleum Technology, \& Mining)
Time: $\mathbf{3}$ hours
Max. Marks : 75
Answer any FIVE Questions All Questions carry equal marks
$* * * * *$
1.(a) Solve the system of equations,
$x+y+z=8$
$2 x+3 y+2 z=19$
$4 x+2 y+3 z=23$ using Gauss - Jordan method.
(b) Find the inverse of A using ad joint method where $A=\left[\begin{array}{lll}1 & 0 & 9 \\ 2 & 4 & 5 \\ 1 & 2 & 6\end{array}\right]$.
$[8 \mathrm{M}+7 \mathrm{M}]$
2.(a) Show that the matrix $\mathrm{A}=\left[\begin{array}{ccc}0 & c & -b \\ -c & 0 & a \\ b & -a & 0\end{array}\right]$ satisfies Cayley-Hamilton theorem.
(b) Is the matrix $\left[\begin{array}{ccc}3 & 10 & 5 \\ -2 & -3 & 4 \\ 3 & 5 & 7\end{array}\right]$ diagonalizable?

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

3.(a) Find the eigen values and eigen vectors of the matrix $\mathrm{A}=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$

Hence, reduce the quadratic form $6 x^{2}+3 y^{2}+3 z^{2}-4 x y+4 x z-2 y z$ to its canonical form.
(b) Using orthogonal reduction show that the quadratic form
$\mathrm{q}=2 x_{1}^{2}+4 x_{2}^{2}+4 x_{3}^{2}+2 \mathrm{x}_{1} \mathrm{x}_{2}-2 \mathrm{x}_{1} \mathrm{x}_{3}+6 \mathrm{x}_{2} \mathrm{x}_{3}$ is positive semi definite. Also specify non-zero $\mathrm{X}=\left(x_{1}, x_{2}, x_{3}\right)$ which will make $\mathrm{q}=0$.

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

4.(a) Find a real root of $f(x)=x^{3}-19$ correct up to three decimal places starting with $x=1$ by Newton Raphson method.
(b) Solve the equation $\mathrm{x} \tan \mathrm{x}=-1$ by Regula Falsi method starting with $\mathrm{a}=2.5$ and $\mathrm{b}=3$, correct to 3 decimal places.

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

Page 1 of 2.

Subject Code-: R10206/R10

5.(a) Define the operations of Δ, ∇, and E, and show that
(i) $\Delta=E \nabla$
(ii) $\nabla=E^{-1} \Delta$
(iii) $E=1+\Delta$
(iv) $E^{-1}=1-\nabla$
(b) For the following data fit a polynomial

x	1	2	3	4
y	2	5	16	41

By using Newton Forward and Backward Difference Formulae.
$[8 \mathrm{M}+7 \mathrm{M}]$
6.(a) A rod is rotating in a plane. The following table gives the angle θ (xin radians) through which the rod has turned for various values of time (seconds)

t	0.0	0.2	0.4	0.6	0.8	1.0
θ	0.00	0.12	0.49	1.12	2.02	3.20

Calculate the angular velocity and the angular acceleration of the rod when $t=0.3$ seconds.
(b) A river is 80 meters wide. The depth d in meters at a distance x from the bank is given in the following table. Calculate the cross section of the river using Trapizoidal rule.

x	10	20	30	40	50	60	70	80
$\mathrm{~d}(\mathrm{x})$	4	7	9	12	15	14	8	3

[$8 \mathrm{M}+7 \mathrm{M}]$
7.(a) Use Milne method to find $y(0.8)$ from $y^{1}=1+y^{2}, y(0)=0$. Find the initial values $y(0.2)$, y (0.4) and y (0.6) from Runge - Kutta method.
(b) Apply Milne Predictor Corrector method to find y (0.8), y (1.0) from the equationýy $=y-x^{2}$, $y(0)=1$ by obtaining the starting values by Euler method.
8.(a) Fit a least square parabola $y=a+b x+c x^{2}$ to the data $\mathrm{f}(-1)=-2, \mathrm{f}(0)=1, \mathrm{f}(1)=2, \mathrm{f}(2)=4$.
(b) Fit a straight line of the from $y=a+b x$ to the following data.

x	50	60	70	80
y	205	225	248	274

Subject Code-: R10206/R10

Set No - 4

I B.Tech II Semester Regular Examinations June - 2012 MATHEMATICAL METHODS

(Common to Electronics \& Communication Engineering, Information Technology, Mechanical
Engineering, Chemical Engineering, Biomedical Engineering, Electronics \& Computer Engineering, Petroleum Technology, \& Mining)
Time: $\mathbf{3}$ hours
Max. Marks : 75
Answer any FIVE Questions All Questions carry equal marks

* * * * *

1.(a) Define rank of a matrix, normal form of a matrix and echelon form of a matrix
(b) Reduce to echelon form and hence find the rank of the matrix $\mathrm{A}=\left[\begin{array}{cccc}1 & 2 & -4 & 5 \\ 2 & -1 & 3 & 6 \\ 8 & 1 & 9 & 7\end{array}\right]$

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

2. Diagonalize the matrix $\mathrm{A}=\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right]$ and find A^{4} using the modal matrix.
3.(a) If A and B are Hermitian, then prove that
(i) $\mathrm{AB}+\mathrm{BA}$ is Hermitian
(ii) $\mathrm{AB}-\mathrm{BA}$ is skew - Hermitian
(b) Find the orthogonal transformation which transforms the Quadratic form $x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}+2 \mathrm{x}_{2}$ x_{3} to canonical form.

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

4.(a) Show that Newton Raphson converges quadratically while successive iteration method converges linearly.
(b) Using Regula Falsi method find a real root of $f(x)=2 x^{7}+x^{5}+1=0$ correct up to two decimal places using $\mathrm{a}=-1, \mathrm{~b}=1$.
$[7 M+8 M]$
5.(a) Prove the following:-
(i) $u_{x}=u_{x-1}+\Delta u_{x-2}+\Delta^{2} u_{x-3}+\cdots+\Delta^{n-1} u_{x-n}+\Delta^{n} u_{x-n-1}$
(ii) $\Delta^{n} y_{x}=y_{x+n}-C_{1}^{n} y_{x+n-1}+C_{2}^{n} y_{x+n-2}+(-1)^{n} y_{x}$
(iii) $u_{1}+u_{2}+\cdots+u_{n}=C_{1}^{n} u_{0}+C_{2}^{n} \Delta u_{0}+\cdots+\Delta^{n-1} u_{0}$.
(b) Find the Lagrange's interpolating polynomial and using it find y when $\mathrm{x}=10$, if the values of x and y are given as follows:

x	5	6	9	11
y	12	13	14	16

$[8 \mathrm{M}+7 \mathrm{M}]$
Page 1 of 2.

Subject Code-: R10206/R10

Set No - 4

6.(a) Find the maximum and minimum values of y from the following table:

x	0	1	2	3	4	5
y	0	$\frac{1}{4}$			0	$\frac{9}{4}$
			16	$\frac{225}{4}$		

(b) The following table gives the value of $f(x)$ at equal intervals of x.

x	0	0.5	1.0	1.5	2.0
y	0.399	0.352	0.242	0.129	0.054

Evaluate $\int_{0}^{2} f(x) d x$ using Simpson's rule.
7.(a) Applying Runge - Kutta fourth order method find y (0.2), y (0.4) and y (0.6)

Where $y^{1}=-x y^{2}, y(0)=2$. choose step size $\mathrm{h}=0.2$.
(b) Apply Milne Predictor Corrector method to find y (0.4) by obtaining the initial solution
of $\frac{d y}{d x}=y+x^{2}$. Y (0$)=2$ by Taylor series method. \qquad
8.(a) Fit a second degree of polynomial to the following data by the method of least squares:

x	0	1	2	3	4
y	1	1.8	1.3	2.5	6.5

(b) Fit a least square parabola for the data

X	0	1	2	3	4	5	6
y	1	2	7	16	29	46	67

$[8 \mathrm{M}+7 \mathrm{M}]$

Page 2 of 2.

