Code No: R10102/R10

I B.Tech I Semester Regular Examinations, February 2013 MATHEMATICS-I

 (Common to Civil Engineering, Electrical & Electronics Engineering, Mechanical Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Chemical Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)

Time: 3 hours

Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Solve $dy + (2y \cot x + \sin 2x)dx = 0$
 - (b) Find the orthogonal trajectory of the family of curves $2xy + y^2 x^2 = a$, where 'a' is a parameter [8+7]
- 2. (a) Explain the procedure to find Complete solution of second order non homogeneous differential equation with constant coefficients.

(b) Solve
$$(D^2 - 4)y = x \sin \lambda x$$
 [8+7]

- 3. (a) Find the dimensions of a open rectangular tank of maximum capacity whose surface area is 54 square feet.
 - (b) In a right angled triangle ABC with $\angle B = 90^{\circ}$, find the maximum of cosA cosB cosC. [8+7]
- 4. (a) Trace the curve $r = 4\theta$.
 - (b) Trace the curve $r = \frac{1}{4} + 2\sin\theta$.
- 5. (a) Find the cost of plating of the front portion of the parabolic reflector of an automobile head light of 12cm diameter and 4 cm deep if the cost of plating is Rs. 2.00 per Sq. cm.
 - (b) Find the volume of the right circular cone of height 'h' and base radius 'r'.
 - [8+7]

[8+7]

- 6. (a) Evaluate $\int \int \int_{v} dx dy dz$ where V is the finite region of space formed by the planes x=0,y=0, z = 0 &2x + 3y + 4z = 12.
 - (b) Evaluate $\int \int_R y \, dxdy$ where R is the region bounded by the Parabolas $y^2 = 4x$ and $x^2 = 4y$. [8+7]
- 7. (a) Find the directional derivative of $xyz^2 + xz$ at (1,1,1) in a direction of the normal to the surface $3x^2y + y = z$ at (0,1,1).
 - (b) Show that the vector $(x^2-yz)i (y^2-zx)j + (z^2-xy)k$ is irrotational and find its scalar potential. [8+7]

$1~{\rm of}~2$

www.FirstRanker.com

Code No: R10102/R10

- 8. (a) If $f = 4xzi -y^2j + yzk$, evaluate $\int_s f N ds$ where S is the surface of the cube bounded by x = 0, x = a, y = 0, y = a, z = 0, z = a.
 - (b) Evaluate by Green's theorem, $\oint_c (y \sin x) dx + \cos x dy$ where C is the triangle enclosed by the lines $x = 0, x = \frac{\pi}{2}, \pi y = 2x$. [8+7]

Code No: R10102/R10

I B.Tech I Semester Regular Examinations, February 2013 MATHEMATICS-I

 (Common to Civil Engineering, Electrical & Electronics Engineering, Mechanical Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Chemical Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)

Time: 3 hours

Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks ****

1. (a)Solve (xy Sin xy + Cos xy)y dx + (xy Sin xy - Cos xy)x dy = 0 [8+7]
(b) Radium decomposes at a rate proportional to the amount present. If 5 % of the original amount disappears in 50 years, how much will remain after 100 years.

2. (a) Solve
$$(D^2 + 9)y = \sec 3x$$

(b) Solve $\frac{d^2y}{dx^2} + 4y = xCos x$
[8+7]

- 3. (a) Find Taylor's series expansion of the f(x,y) = cos x about x = π/3 and hence find the approximate value of cos 35°.
 (b) If x = u√(1-r²), y = v√(1-r²), z = w√(1-r²) such that x² + y² + z² = r² then find ∂(u,v,w)/∂(x,y,z). [8+7]
- 4. (a) Trace the curve $r^2 = a^2 \cos 2\theta$. (b) Trace the curve $\mathbf{x} = \mathbf{a} \ (\theta + \sin \theta), \ \mathbf{y} = \mathbf{a} \ (1 + \cos \theta)$. [8+7]
- 5. (a) A man walks along the curve 20y=3(4x²-20x+9) between the points, Where x=¹/₂ and x = ⁹/₂ find the distance covered by the man?
 (b) Find the surface area of the solid generated by the revolution of the astroid x^{2/3} + y^{2/3} = a^{2/3} about the x-axis. [8+7]
- 6. (a) Evaluate $\int_0^4 \int_{y^2/4}^y \frac{y}{x^2+y^2} \, dx \, dy.$ (b) Evaluate $\int_0^1 \int_0^{1-x^2} \int_0^{1-x^2-y^2} xyz \, dz \, dy \, dx.$ [8+7]
- 7. (a)If V= e^{xyz}(i+j+k), find curl V.
 (b) Find the constants a and b so that the surface ax²-byz = (a+2)x will be orthogonal to the surface 4x²y +z³ =4 at the point (1,-1,2) [8+7]
- 8. (a)Let C be the curve $x = 1 y^2$ from (0,-1) to (0, 1). Evaluate $\oint_c y^3 dx + x^2 dy$ (b) Use Gauss divergence theorem to evaluate $\iint_S (yz^2i + zx^2j + 2z^2k) \cdot Nds$, where S is the surface bounded by the xy-plane and the upper half of the sphere $x^2 + y^2 + z^2 = a^2$ above the this plane. [8+7]

1 of 1

Set No. 3

Code No: R10102/R10

I B.Tech I Semester Regular Examinations, February 2013 MATHEMATICS-I

 (Common to Civil Engineering, Electrical & Electronics Engineering, Mechanical Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Chemical Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)

Time: 3 hours

Max Marks: 75

[8+7]

[8+7]

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Solve $x \frac{dy}{dx} + y = x^3 y^6$
 - (b) Find the orthogonal trajectory of the family of curves $r^2 = a \cos 2\theta$, where 'a' is a parameter [7+8]
- 2. (a) Solve $(D^2 3D + 2)y = e^x$ (b) Solve $(D^4 - a^4)y = 0$ [8+7]
- 3. (a) Calculate the approximate value of $\sqrt{10}$ to four decimal places using Taylor's theorem.

(b) Find 3 positive numbers whose sum is 600 and whose product is maximum.

- 4. (a) Trace the curve $r = \frac{3a \sin \theta \cos \theta}{\sin^3 \theta + \cos^3 \theta}$ (b) Trace the curve $r = \tan \theta$.
- 5. (a) Find the length of the arc of the semi-cubical parabola $ay^2 = x^3$ from the vertex to the ordinate x=5a.
 - (b) Find the area of the surface of revolution generated by revolving one arc of the curve y=sinx about the x-axis . [8+7]
- 6. (a) Evaluate $\int \int \frac{r dr d\theta}{a^2 + r^2}$ over one loop of the lemniscates $r^2 = a^2 \cos 2\theta$.
 - (b) Evaluate the integral $\int_0^a \int_0^{\sqrt{a^2-x^2}} (1-x^2-y^2)^{1/2} dx dy$ by changing into polar coordinates and hence evaluate it. [8+7]
- 7. (a) Prove that $\overline{F} = r^2 \overline{r}$ is conservative and find the scalar potential.
 - (b) Show If θ is the acute angle between the surfaces $xy^2z = 3x + z^2$ and $3x^2 y^2 + 2z = 1$ at the point (1,-2,1), show that $\cos \theta = \frac{3}{7\sqrt{6}}$. [8+7]
- 8. Verify Green's theorem for $\oint_c (xy + y^2)dx + x^2dy$ where C is a bounded by y=x and y =x². [15]

1 of 1

Code No: R10102/R10

I B.Tech I Semester Regular Examinations, February 2013 MATHEMATICS-I

 (Common to Civil Engineering, Electrical & Electronics Engineering, Mechanical Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Chemical Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)

Time: 3 hours

Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a)Solve $dy + (2y \cot x + Sin 2x)dx = 0$ (b) Find the orthogonal trajectory of the family of curves $2xy + y^2 - x^2 = a$, where 'a' is a parameter [8+7]
- 2. (a) Explain the procedure to find Complete solution of second order non homogeneous differential equation with constant coefficients.

(b) Solve
$$(D^2 - 4)y = x \sin \lambda x$$
 [8+7]

- 3. (a) If U = $f\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$, P.T. $x^2\frac{\partial f}{\partial x} + y^2\frac{\partial f}{\partial y} + z^2\frac{\partial f}{\partial z} = 0$.
 - (b) Expand $u = x^y$ in powers of (x-1) and (y-1) up to third degree terms. [8+7]
- 4. (a) Trace the curve $\mathbf{r} = \cos 4\theta$. (b) Trace the curve $y^2(1-x) = x^2(1+x)$..
 [8+7]
- 5. (a) Find the surface area generated by rotating the arc of the catenary $y=a \cosh \frac{x}{a}$ from x=0 to a about the x-axis.
 - (b) Find the volume of the solid generated by revolving about the x-axis of the loop of the curve $y^2 = x^2 \frac{(a+x)}{a-x}$. [8+7]
- 6. (a) Evaluate $\int \int r dr d\theta$ over the region bounded by the cardioid $r=a(1+\cos\theta)$ and out side the circle r=a.
 - (b) By Transforming into cylindrical coordinates evaluate the integral $\int \int \int z(x^2 + y^2 + z^2) dxdydz$ taken over the volume of the cylinder $x^2 + y^2 = a^2$ intercepted by the plus z=0 and z=h. [8+7]
- 7. (a) Find div f and curl f where $f = grad(x^3 + y^3 + z^3 3xyz)$
 - (b) Find the angle of intersection at (4,-3,2) of spheres $x^2 + y^2 + z^2 = 29$ and $x^2 + y^2 + z^2 + 4x 6y 8z 47 = 0$ [8+7]
- 8. Verify Stokes theorem for F = (y-z+2)i+(yz+4)j-xzk where S is the surface of the cube x=0, y=0,z=0,x=2,y=2,z=2 above the xy-plane [15]

1 of 1