www.FirstRanker.com

SET - 1 **R07** Code No: X0121 II B. Tech I Semester, Supplementary Examinations, Nov - 2012 **MATHEMATICS-II** (Com. to CE, CHEM, AE, BT) Time: 3 hours Max. Marks: 80 Answer any FIVE Questions All Questions carry Equal Marks 1. a) Find the rank by reducing the matrix to normal form and echelon form $\begin{bmatrix} -1 & 2 & 3 & -2 \\ 2 & -5 & 1 & 2 \\ 3 & -8 & 5 & 2 \\ 5 & -12 & -1 & 6 \end{bmatrix}$ b) Solve the following equation $X_1 + 2X_2 + 3X_3 = 0$ $2X_1 + 3X_2 + X_3 = 0$ $4X_1 + 5X_2 + 4X_3 = 0$ X₁+X₂-2X₃ =0 2. a) If $\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigen values of A then $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}$ are the eigen $X_1 + X_2 - 2X_3 = 0$ values of A⁻¹ b) Diagonalize A= $\begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ a) Reduce the following quadratic forms to canonical form by Diagonalization 3. $x^{2}+4y^{2}+9z^{2}+t^{2}-12yz+6zx-4xy-2xt-6tz$ b) If $A = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$ find A^{50} 4. a) Find the Fourier expansion $f(x) = \frac{(\pi - x)^2}{4}$ in the interval $0 < x < 2\pi$ b) If $f(x) = x, 0 \le x \le \pi$ find the i) cosine series ii) sine series and hence deduce $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$ 1 of 2

www.FirstRanker.com

- b) Solve $\sqrt{p} + \sqrt{q} = 1$
- 6. a) Solve by the method of separation of variables $2x\frac{\partial z}{\partial x} 3y\frac{\partial z}{\partial y} = 0$
 - b) A tightly stretched string with fixed end points x=0 and x=1 is initially in a position given by $y(x,0) = y_0 \sin \frac{\pi x}{l}$ It is released from rest from this position, find the displacement. y at any distance x from one end at any time t.

7. a) Express the function
$$f(x) = \begin{cases} 1, |x| \le 1\\ 0, |x| > 1 \end{cases}$$
 as Fourier integral. Hence evaluate $\int_{0}^{\infty} \frac{\sin \lambda \cos \lambda x}{\lambda} d\lambda$

- b) Find the Fourier sine transform of $\frac{1}{x(x^2 + a^2)}$
- 8. a) Find the Z- transform of $(n-1)^2$
 - b) Find the inverse Z –transform of $\frac{z}{z^2 2z + 2}$

2 of 2

	le No: X0121	R07	SET -
	II B. Tech I Se	emester, Supplementary Examinations, Nov –	2012
		MATHEMATICS-II (Com. to CE, CHEM, AE, BT)	
Tin	e: 3 hours		Max. Marks:
		Answer any FIVE Questions	
		All Questions carry Equal Marks	
1.	a) Find the rank by reduci	ng the matrix to normal form and echelon form	$\begin{bmatrix} 1 & 2 & 2 \\ 2 & 3 & 4 \\ 3 & 5 & 6 \\ -1 & 1 & -2 \end{bmatrix}$
	b) Solve the following equ $2x_1-x_2+2x_3 = 2$ $x_1+10x_2-3x_3=5$ $-x_1+x_2+x_3 = -3$		_
2.	a) If $\lambda_1, \lambda_2, \dots, \lambda$ values of A^k .	λ_n are the eigen values of A then λ_1^k , λ_2^k ,	$\lambda_n^{\ k}$ are the
	b) Find a matrix P which A ⁴	transform the matrix $A = \begin{bmatrix} 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ to diagonal for $\begin{bmatrix} 3 & 1 & 1 \end{bmatrix}$	orm. Hence cald
3.	$2x^2 + 9y^2 + 6z^2 + 8xy + 8yz$		ation
	b) Given $A = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$ find A	A^{256}	
4.	 a) Expand f(x)=e^{-x} as a Fo b) Find the half – range si 	purier series in (-1,1) the series for $f(x)=\cos x$ in $(0,\pi)$	
5.	a) From the partial difference Z=Ae ^{-pt} cos qx sin ry w b) Solve $\frac{x^2}{p} + \frac{y^2}{q} = z$	ential equation by eliminating the arbitrary const where $p^2=q^2+r^2$	ants from
	p q		

R07
 SET - 2

 (a)
$$s_{0} = \int_{2\pi}^{2} -2 \int_{2\pi}^{2} + \frac{2\pi}{2} = 0$$
 by the method of separation of variable.
 (b) $s_{0} = \int_{2\pi}^{2} -2 \int_{2\pi}^{2} +2 \int_{2\pi}^{2} = 0$ by the method of separation of variable.

 (a) $s_{0} = \int_{2\pi}^{2} -2 \int_{2\pi}^{2} +2 \int_{2\pi}^{2} = 0$ by the method of separation of variable.
 (c) $s_{0} = \int_{2\pi}^{2\pi} -2 \int_{2\pi}^{2} +2 \int_{2\pi}^{2} +3\pi$

 (a) $s_{0} = separate the function $f(x) = \begin{cases} 1/2 x \leq 1 \\ 0 < x > 1 \end{cases}$ as Fourier integral. Hence $e_{0} = a_{1} \int_{2\pi}^{\infty} \frac{2\pi}{2} + 3\pi}$

 (b) Find the Z -transform a^{n+3}

 (c) $s_{0} = 1$ character $a_{0} = \frac{2\pi^{2} + 3\pi}{(2\pi + 2)(2\pi - 4)}$$

Code No: X0121

II B. Tech I Semester, Supplementary Examinations, Nov – 2012 **MATHEMATICS-II** (Com. to CE, CHEM, AE, BT)

Time: 3 hours

Max. Marks: 80

Answer any FIVE Questions All Questions carry Equal Marks

- 1. a) Find the rank by reducing the matrix to normal form and echelon form
 - 4 2 6 -1 10 3 9 7 16 4 12 15

i) x+y+z = 8

b) Solve the system of equations

7

iii) 4x+2y+3z = 23 Using elementary row transformation of the coefficient matrix.

a) Show that sum of the eigen values of a matrix is the trace of the matrix. 2.

b) Verify Cayley Hamilton Theorem, for the matrix $A = \begin{vmatrix} -6 & -1 & 2 \\ 6 & 2 & -1 \end{vmatrix}$ 6

- a) Reduce the following quadratic forms to canonical form by Diagonalization 3. $2x_1^2 + 5x_2^2 + 3x_3^2 + 4x_1x_2$
 - b) Given A= $\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ find A^{25}
- a) Find the Fourier series for the function 4. i) $F(x) = -\pi, -\pi < x < 0$

ii) x, $0 < x < \pi$ and hence deduce the series $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi}{2}$ b) Find half –range cosine series for $f(x) = \begin{cases} 1, & 0 < x < \frac{1}{2} \\ 1 - x, & \frac{1}{2} < x < 1 \end{cases}$

1 of 2

www.FirstRanker.com

www.FirstRank

Code No: X0121

- 5. a) Form the differential equation of all planes which are at a constant distance d from the origin
 - b) Solve the equation $z^2(p^2 + q^2) = 1$ Also find singular integral if it exists

6. a) Using the method of separation of variables, solve $4\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 3u$ given

 $u = 3e^{-y} - e^{-5y}$ where x = 0

b) An insulated rod of length L has its ends A and B maintained at 0^{0} C and 100^{0} C respectively until steady state conditions prevail. If B is suddenly reduced to 0^{0} C and maintained at 0^{0} C, find the temperature at a distance x from A at time t.

7. a) Using the Fourier integrals prove that $\int_{0}^{\infty} \frac{\cos \lambda x}{1 + \lambda^2} d\lambda = \frac{\pi}{2} e^{-x} \quad x \ge 0$ b) Find the fourier sine transform of f(x) $\begin{cases} x, 0 < x < 1 \\ 2 - x, 1 < x < 2 \\ 0, x > 2 \end{cases}$

- 8. a) If Z (u_n)= $\frac{z}{z-1} + \frac{z}{z^2+1}$ find the Z- transform of u_{n+2}
 - b) Find the inverse Z –transform of $\frac{z}{z^2 + 7z + 10}$

Code No:	X0121 (R07)	(SET -		
	II B. Tech I Semester, Supplementary Examinations, Nov – 2012 MATHEMATICS-II			
Time: 3 h	(Com. to CE, CHEM, AE, BT)	Max. Marks:		
	Answer any FIVE Questions All Questions carry Equal Marks			
1. a) Fin	ad the rank by reducing the matrix to normal form and echelon form	$m \begin{bmatrix} 2 & 0 & -1 \\ 4 & -1 & -2 \\ 3 & 2 & 3 \\ 6 & 3 & 0 \end{bmatrix}$		
	Ive the following system of equations $4x+2y+3w = 0$ ii) $6x+3y+4z+7w = 0$ iii) $2x+y+w = 0$			
2. a) Ifb) Us	a) If λ is the eigen value of A then the eigen value of $B=a_0A^2+a_1A+a_21$ is $a_0\lambda^2+a_1\lambda+a_2$ b) Using Cayley Hamilton theorem, find the inverse of $A = \begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$			
X ₁ b) Gi	duce the following quadratic forms to canonical form by Diagonal $x^{+2}+2x_2^2-7x_3^2-4x_1x_2+8x_1x_2$ wen A= $\begin{bmatrix} 1 & 20 & 0 \\ -1 & 7 & 1 \\ 3 & 0 & -2 \end{bmatrix}$, A^5			
de $\frac{1}{1.7}$	$f(x)=0 \text{ for } -\pi < x < 0 = \sin x \text{ for } 0 < x < \pi \text{ Show that } f(z) = \frac{1}{\pi} + \frac{\sin x}{2} - \frac{2}{\pi}$ duce the series $\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots = \frac{1}{4}(\pi - 2)$ $\frac{1}{3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots = \frac{1}{2}$ $f(x) = \sin x, \ 0 \le x < \frac{\pi}{4} \cos x, \ \frac{\pi}{4} \le x \le \frac{\pi}{2} \text{ Find the half range sine set}$			
	1 of 2			

Code

 a) From the partial differential equation by eliminating the arbitrary constants a and b from the following equations log (az-1)= ax+y+b

b) Solve
$$(x + pz)^2 + (y + qz)^2 = 1$$

6. a) Solve
$$4\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 3u; u(0, y) = e^{-5y}$$

- b) The ends A and B of a rod 20 cm long have the temperature at 30°C and 80°C until steady state conditions prevail. The temperature at the ends are suddenly changed to 40°C and 60°C respectively. Find the temperature distribution in the rod at time t
- 7. a) Using the Fourier integrals prove that $\int_{0}^{\infty} \frac{\sin w \cos xw}{w} dw = \frac{\pi}{2}, 0 \le x \le 1$
 - b) Show that Fourier transform of $\frac{-x^2}{e^2}$ is reciprocal

8. a) Show that
$$Z\left[\frac{1}{n+1}\right] = Z \log\left\{\frac{Z}{Z+1}\right\}$$

b) Find the Inverse transform of log $\left(\frac{z}{z+1}\right)$ by power series method.

2 of 2