Time: 3 hours

Max Marks: 75

Answer any FIVE Questions
 All Questions carry equal marks

1.(a) Find the differential equations of all parabolas with x -axis as its axis and $(\alpha, 0)$ as its focus.
(b) Find the orthogonal trajectories of coaxial circles $x^{2}+y^{2}+2 \lambda y+c=2$, where λ is the parameter.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

2.(a) Solve $\left(D^{2}-2\right) y=e^{-\sqrt{2} x}+\cos x$
(b) Solve $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+5 y=2 \sinh x \quad$ subject to $\mathrm{y}=\mathrm{o}$ and $\frac{d y}{d x}=1$ at $\mathrm{x}=0$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

3.(a) If $u=x y+y z+z x, v=x^{2}+y^{2}+z^{2}$ and $w=x+y+z$, verify whether there exists a possible relationship in between u, v and w . If so find the relation.
(b) Find the minimum value of $x^{2}+y^{2}+z^{2}$ on the plane $x+y+z=3 a$

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

4.(a) Trace the curve $x\left(x^{2}+y^{2}\right)=4\left(x^{2}-y^{2}\right)$
(b) Trace the polar curve $r=2+3 \cos \theta$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

5.(a) Find the perimeter of one loop of the curve $3 a y^{2}=x(x-a)^{2}$.
(b) Find the volume generated by revolving the area bounded by one loop of the curve $r=a(1+\cos \theta)$ about the initial line.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

6.(a) Evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d x . d y$ by changing the order of integration.
(b) Evaluate $\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} d y d x$ by changing into polar coordinates.
[7M +8 M]
7.(a) Find the directional derivative of $\phi(x, y, z)=x y^{2}+y z^{3}$ at the point $(2,-1,1)$ in the direction of the vector $i+2 j+2 k$.
(b) Find ${ }^{\operatorname{curl}[r f(r)]_{\text {where }}}{ }^{r=x i+y j+z k}, r=|r|$

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

Page 1 of 2

8.(a) Compute the line integral $\int\left(y^{2} d x-x^{2} d y\right)$ round the triangle whose vertices are $(1,0),(0,1)$ and $(-1,0)$ in the $x y-$ plane.
(b) Evaluate the integral $I=\iint_{S} x^{3} d y d z+x^{2} y d z d x+x^{2} z d x d y$ using divergence theorem, where S is the surface consisting of the cylinder $x^{2}+y^{2}=a^{2}(0 \leq z \leq b)$ and the circular disks $\$ \mathrm{z}=0 \$$ and $z=b\left(x^{2}+y^{2} \leq a^{2}\right)$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

I B.Tech I Semester Regular/Supplementary Examinations January 2012 MATHEMATICS - I
 (Common to all branches)

Time: 3 hours
Max Marks: 75

Answer any FIVE Questions
 All Questions carry equal marks

1.(a) Find the solution of the differential equation $\frac{d y}{d x}=x e^{y-x^{2}}$ and $y(0)=0$.
(b) A body initially at $80^{\circ} \mathrm{C}$ cools down to $50^{\circ} \mathrm{C}$ in 10 minutes, the temperature of the air being $40^{\circ} \mathrm{C}$. What will be the temperature of the body after 20 minutes?

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

2.(a) Solve $\frac{d^{2} y}{d x^{2}}+9 y=e^{2 x} x^{2}$
(b) Find the general solution of $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=e^{x} \sin 2 x$

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

3.(a) Verify whether the functions $u=\sin ^{-1} x+\sin ^{-1} y$ and $v=x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}$ are functionally dependent. If so, find the relation between them.[7 M+8 M]
(b) Prove that the rectangular solid of maximum volume that can be inscribed into a sphere of radius ' a ' is a cube.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

4.(a) Trace the parametric curve $x=a\left(\cos \theta+\frac{1}{2} \log \tan ^{2}\left(\frac{t}{2}\right)\right.$ and $y=a \sin t$.
(b) Trace the lemniscate $r^{2}=a^{2} \cos 2 \theta$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

5.(a) Find the surface area generated by revolving the arc of the curve $y=a \cosh (x / c)$ from $x=0$ to $x=c$ about the x-axis.
(b) Find the total length of the lamniscate $r^{2}=a^{2} \cos 2 \theta$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

6.(a) Find the area of the region which is outside the circle $\mathrm{r}=1$ and inside the cordioid $r=(1+\cos \theta)$
(b) Evaluate the following integral by changing into polar coordinates $\iint \sqrt{\frac{1-\left(x^{+} y^{2}\right)}{1+x^{2}+y^{2}}} d x d y$ over the positive coordinate of the circle $x^{2}+y^{2}=1$

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

Page 1 of 2

7.(a) Find the directional derivative of the divergence of $F=x y i+y z j+z^{2} k$ at the point $(2,1,2)$ in the direction of the outer normal to the sphere $x^{2}+y^{2}+z^{2}=9$.
(b) Find the value of a, b and c such that $(x+y+a z) i+(b x+2 y-z) j+(-x+c y+2 z) k$ is irrotational.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

8.(a) If $f=\left(x^{2}+y-4\right) i+3 x y j+\left(2 x z+z^{2}\right) k$ and S is the upper half of the sphere $x^{2}+y^{2}+z^{2}=16$. Show by using Stokes theorem that \int_{S} Curlf.nds $=2 \pi a^{3}$.
(b) If S is the surface of the tetrahedron bounded by the planes $x=0, y=0, z=0$ and $a x+b y+c z=1$. Show that $\int_{S} r \cdot n d s=\frac{1}{2 a b c}$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

Page 2 of 2

I B.Tech I Semester Regular/Supplementary Examinations January 2012 MATHEMATICS - I
 (Common to all branches)

Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1.(a) Solve $\left(x^{2}+y^{2}\right) \frac{d y}{d x}=x y$
(b) A colony of bacteria is grown under ideal condition in laboratory so that the population increases exponentially with time. At the end of 3 hours there are 10000 bacteria. At the end of 5 hours there are 40000 . How many bacteria were present initially?

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

2.(a) Solve $\left(D^{3}-6 D^{2}+11 D-6\right) y=e^{-2 x}+x^{3}$
(b) Solve $\left(D^{2}+1\right) y=x^{2} e^{2 x}+x \cos x$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

3.(a) If $u=x+y+z, u^{2} v=y+z$ and $u^{3} w=z$, then find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.
(b) Find the minimum and maximum distances of a point on the curve $2 x^{2}+4 x y+4 y^{2}-8=0$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

4.(a) Trace the parametric curve $x=a(t-\sin t)$ and $y=a(1+\cos t)$
(b) Trace the curve $y^{2}(x-a)=x^{2}(x+a)$ and $a>0$

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

5.(a) Find the volume of the solid formed by revolving the area bounded by the curve $27 a y^{2}=4(x-2 a)^{3}$ about x -axis
(b) Find the length of the loop of the curve $r=a(1-\cos \theta)$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

6.(a) Find the area of the loop of the curve $x^{3}+y^{3}=3 a x y$, by transforming it into polar coordinates.
(b) Change the order of integration and evaluate $I=\int_{0}^{1} \int_{x}^{\sqrt{x}} x y d y d x$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

Page 1 of 2

7.(a) In what direction from the point $(1,3,2)$ is the directional derivative of $\phi=2 x z-y^{2}$ is maximum and what is its magnitude.
(b) Show that $\bar{F}=\left(y^{2} \cos x+z^{3}\right) i+(2 y \sin x-4) j+\left(3 x z^{2}+2\right) k$ is a conservative force field and find its scalar potential.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

8.(a) Show that $F=\left(2 x y+z^{3}\right) i+x^{2} j+3 x z^{2} k$ is a conservative force field. Find the scalar potential and the work done in moving an object in this field from $(1,-2,1)$ to $(3,1,4)$.
(b) Verify Green's theorem , if $M d x+N d y$ is $\left(x y+y^{2}\right) d x+x^{2} d y$ with c: closed curve of the region bounded by $y=x$ and $y=x^{2}$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

I B.Tech I Semester Regular/Supplementary Examinations January 2012 MATHEMATICS - I
 (Common to all branches)

Time: 3 hours

Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1.(a) Solve $x \frac{d y}{d x}-y=x \sqrt{x^{2}+y^{2}}$
(b) A body is heated to $110^{\circ} \mathrm{C}$ is placed in air at $10^{\circ} \mathrm{C}$. After 1 hour its temperature is $80^{\circ} \mathrm{C}$. When will the temperature be $30^{\circ} \mathrm{C}$?

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

2.(a) Solve $\left(D^{2}+3 D+2\right) y=\sin x \sin 2 x$
(b) Solve $\left(D^{2}+2 D-3\right) y=x^{3} e^{-2 x}$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

3.(a) Verify whether the functions $u=\frac{x-y}{x+z}$ and $v=\frac{x+z}{y+z}$ are functionally dependent. If so, find the relation in between them.
(b) The temperature T at any point (x, y, z) in the space is given as $T=400 x^{2} y z$. Find the highest temperature on the surface of the sphere $x^{2}+y^{2}+z^{2}=1$

$$
[7 \mathrm{M}+8 \mathrm{M}] .
$$

4.(a) Trace the curve $x^{3}+y^{3}=3 a x y$
(b) Trace the polar curve $r=a(1-\sin \theta)$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

5 (a) Find the surface area generated by revolving the arc $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ about x -axis.
(b) Find the volume of the solid generated by revolving the cardioid $r=a(1+\cos \theta)$ about the initial line.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

6.(a) Find the area of a plate in the form of a quadrant of an ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ by changing into polar coordinates.
(b) By changing the order of integration, evaluate the integral $\int_{0}^{4 a} \int_{\frac{y^{2}}{4 a}}^{2 \sqrt{a y}} d x d y$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

Page 1 of 2
7.(a) Find the constants a and b so that the surface $a x^{2}-b y z=(a+2) x$ will be orthogonal to the surface $4 x^{2} y+z^{3}=4$ at the point $(1,-1,2)$.
(b) Determine the constant b such that $\bar{A}=\left(b x^{2} y+y z\right) i+\left(x y^{2}-x z^{2}\right) j+\left(2 x y z-2 x^{2} y^{2}\right) k$ has zero divergence.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

8.(a) Evaluate $\int_{c} \bar{f} \cdot d \bar{r}$ where $\bar{f}=x^{2} i+y^{2} j$ and curve c is the arc of the parabola $\$ \mathrm{y}=\mathrm{x}^{\wedge} 2 \$$ in the xy-plane from $(0,0)$ to $(1,1)$.
(b) Evaluate by Stokes theorem $\oint_{C}(x+y) d x+(2 x-z) d y+(y+z) d z$, where C is the boundary of the triangle vertices $(0,0,0),(1,0,0)$ and $(1,1,0)$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

Page 2 of 2

