Time: 3 hours

Max Marks: 75

Answer any FIVE Questions
 All Questions carry equal marks

1.(a) Find the Laplace transform of $e^{-3 t}(\cos 4 t+3 \sin 4 t)$.
(b) If $f(t)=\left\{\begin{array}{cc}1 & 0 \leq t<1 \\ -1 & 1 \leq t<2\end{array}\right.$ is a periodic function with period 2, find its Laplace transform.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

2.(a) Find the inverse Laplace transform of $\cot ^{-1}\left(\frac{s+2}{3}\right)$.
(b) Solve the initial value problem by using Laplace transform method $y^{\prime \prime}+7 y^{\prime}+10 y=4 e^{-3 t}, y(0)=0$ and $y^{\prime}(0)=-1$
$[7 M+8 M]$
3.(a) If $f(x)=\left(\frac{\pi-x}{2}\right)^{2}$ in the interval $(0,2 \pi)$. Show that $f(x)=\frac{\pi^{2}}{12}+\sum_{n}^{\infty} \frac{\cos n x}{n^{2}}$.

Hence obtain $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots=\frac{\pi^{2}}{12}$.
(b) Obtain half range cosine series $f(x)=x$ in the interval $0 \leq x \leq \pi$. Hence show that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots=\frac{\pi^{2}}{8}$

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

4.(a) State Fourier integral theorem and deduce complex form of it.
(b) Find the Fourier transform of $f(x)=\left\{\begin{array}{ll}1 & |x| \leq a \\ 0 & |x|>a,\end{array}\right.$ and hence evaluate $\int_{-\infty}^{\infty} \frac{\sin a x}{x} d x$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

5.(a) Form the partial differential equation by eliminating arbitrary function from $z=f(y / x)$.
(b) Solve $\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=z^{2}-x y$.
[7M + 8M]
6.(a) A tightly stretched string with fixed end points $x=0$ and $x=L$ is initially at rest in its equilibrium position. If it is set to vibrate by giving each of its points a velocity $\lambda x(L-x)$, find its displacement at a later time t.
(b) Find the temperature in a laterally insulated rod of length L whose both ends are insulated and the initial temperature $u(x, 0)=x$ if $0<x<\frac{L}{2}$ and $L-x$ if $\frac{L}{2}<x<L$.
[7M + 8M]

Page 1 of 2

Code No: R10202 / R10

7.(a) Find the Z-transforms of (i) $(n-1)^{2}$ (ii) $e^{-a n} \cos n \theta$.
(b) Solve the difference equation $u_{n+2}-3 u_{n+1}+2 u_{n}=0$, given $u_{0}=0$ and $u_{1}=1$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

8.(a) Show that $\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$
(b) Evaluate $\int_{0}^{1} x^{2}\left(\log \frac{1}{x}\right)^{3} d x$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

Time: 3 hours

Max Marks: 75

Answer any FIVE Questions
 All Questions carry equal marks

1.(a) Using Laplace transforms evaluate $\int_{0}^{\infty} \frac{e^{-t} \sin ^{2} t}{t} d t$
(b) Find the Laplace transform of the periodic function

$$
f(t)=\left\{\begin{array}{cc}
\sin \omega t & 0 \leq t<\frac{\pi}{\omega} \\
-1 & \frac{\pi}{\omega} \leq t<\frac{2 \pi}{\omega}
\end{array} \text { with period } \frac{2 \pi}{\omega}\right.
$$

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

2.(a) Using convolution theorem, find the inverse Laplace transform of $\frac{1}{\left(s^{2}+9\right)(s+1)^{2}}$
(b) By using Laplace transform, solve the initial value problem $y^{\prime \prime}=t \cos 2 t, y(0)=0$ and $y^{\prime}(0)=0$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

3.(a) Prove that in the interval $(-\pi, \pi), x \cos x=-\frac{1}{2} \sin x+2 \sum_{2}^{\infty} \frac{(-1)^{n}}{n^{2}-1} \sin n x$.
(b) Find the half range sine series of $f(x)=(x-1)^{2}$ in the interval $(0,1)$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

4.(a) Find the Fourier cosine transform of $e^{-x^{2}}$.
(b) Using Fourier integral theorems show that $\int_{0}^{\infty} \frac{\cos \omega x}{1+\omega^{2}} d \omega=\frac{\pi}{2} e^{-x}$.
[7M + 8M]
5.(a) Form the partial differential equation by eliminating arbitrary function from $f\left(x^{2}+y^{2}, z-x y\right)=0$.
(b) Solve $x^{2}(y-z) p+y^{2}(z-x) q=z^{2}(x-y)$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

Page 1 of 2

Code No: R10202 / R10

6.(a) Use separation of variables to solve $3 \frac{\partial u}{\partial x}+2 \frac{\partial u}{\partial y}=0$ with $u(x, 0)=4 e^{-x}$
(b) A rod of length 100 cm length has its ends A and B kept at 0° and 100° centigrade until steady state conditions prevail. The temperatures at the ends are changed to $20^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ respectively. Find the temperature in the rod.
$[7 \mathrm{M}+8 \mathrm{M}]$
7.(a) If $Z\left\{u_{n}\right\}=\frac{z}{z-1}+\frac{z}{z^{2}+1}$, find the Z-transform of u_{n+2}.
(b) Find $Z^{-1}\left\{\frac{z^{3}}{(z+1)(z-1)^{2}}\right\}$

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

8.(a) Define beta function and hence prove that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.
(b) Show that $\int_{0}^{\infty} \sqrt{x} e^{-x^{3}} d x=\frac{\sqrt{\pi}}{3}$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

I B.Tech II Semester Supplementary Examinations January / February - 2012

 MATHEMATICS - II(Common to all branches)

Time: 3 hours

Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1.(a) Show that $\int_{0}^{\infty} t^{2} e^{-4 t} \cdot \sin 2 t d t=\frac{11}{500}$
(b) Define impulse function and finds it's Laplace transform.
$[7 M+8 M]$
2.(a) State and apply convolution theorem to find the inverse Laplace transform of $\frac{1}{(s+2)^{2}\left(s^{2}+4\right)}$.
(b) Solve the differential equation $\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+5 x=e^{-t} \sin t, x(0)=0$ and $x^{\prime}(0)=1$.
[7M + 8M]
3.(a) Find the Fourier series to represent the function $f(x)$ given by $f(x)=\left\{\begin{array}{cc}x & 0 \leq x \leq \pi \\ 2 \pi-x & \pi<x \leq 2 \pi,\end{array}\right.$. Deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\cdots=\frac{\pi^{2}}{8}$.
(b) Find the half range sine series for $f(x)=\left\{\begin{array}{ll}\frac{1}{4}-x & 0<x<\frac{1}{2} \\ x-\frac{3}{4} & \frac{1}{2}<x<1\end{array}\right.$.
$[7 M+8 M]$
4.(a) Evaluate $\int_{0}^{\infty}\left(\frac{\sin t}{t}\right)^{2} d x$.
(b) Find the Fourier sine transform of $\frac{1}{x\left(x^{2}+a^{2}\right)}$.
[7M + 8M]
5.(a) Form the differential equations of all planes which are at a constant distance ' a ' from the origin.
(b) Solve y $p=2 y x+\log q$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

Page 1 of 2

6.(a) Solve $u_{x}=2 u_{t}+u$ where $u(x, 0)=6 e^{-3 x}$.
(b) Solve the Laplace equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ subject to the conditions $u(x, 0)=u(x, b)=u(0, y)=0$ and $u(a, y)=f(y)$.
$[7 \mathrm{M}+8 \mathrm{M}]$
7.(a) Show that $Z\left\{\frac{1}{n+1}\right\}=z \log \frac{z}{z-1}$.
(b) Evaluate $Z^{-1}\left\{\frac{z}{z^{2}+11 z+24}\right\}$
$[7 M+8 M]$
8.(a) Prove that $\beta(n, n)=\frac{\sqrt{\pi} \Gamma(n)}{2^{2 n-1} \Gamma\left(n+\frac{1}{2}\right)}$.
(b) Prove that $\int_{0}^{1} x^{5}(1-x)^{3} d x=\frac{1}{504}$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

Page 2 of 2

Answer any FIVE Questions
 All Questions carry equal marks

1.(a) Find the Laplace transform of $\frac{\sin 3 t \cos t}{t}$
(b) Find the Laplace transform of $3 \cos 4(t-2) u(t-2)$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

2.(a) Find the Laplace transform of $\frac{2 s+12}{s^{2}+6 s+13}$.
(b) By using Laplace transform method solve $\left(D^{2}-2 D+2\right) x=0$, given that $x=D x=1$ at $t=0$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

3.(a) Expand $f(x)=e^{-x}$ as a Fourier series in the interval $(-L, L)$.
(b) Obtain half range sine series for e^{x} in $0<x<1$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

4.(a) Find the Fourier cosine transform of $e^{-a x}$ and hence evaluate $\int_{0}^{\infty} \frac{\cos \lambda x}{x^{2}+a^{2}} d x$.
(b) Solve the integral equation $\int_{0}^{\infty} f(x) \cos \alpha x d x=e^{-\alpha}$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

5.(a) Form the PDE by eliminating ' f ' from $f\left(x+y+z, x^{2}+y^{2}+z^{2}\right)=0$.
(b) Solve $x^{2} p^{2}+y^{2} q^{2}=z^{2}$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

6.(a) Solve $u_{x x}=u_{y}+u$ with $u(0, y)=0$ and $\frac{\partial u(0, y)}{\partial x}=1+e^{-3 y}$.
(b) A bar of length L is laterally insulated with its ends A and B kept at 0° and 100° respectively until steady state condition is reached. The temperature at A is raised to 30° and that at B is reduced to 80° simultaneously. Find the temperature in the rod at a later time.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

Code No: R10202 / R10

7.(a) Find the Z-transforms of (i) $\frac{1}{(n+1)!}$ and (ii) $1+(-2)^{n}$.
(b) Solve $u_{n+2}-6 u_{n+1}+9 u_{n}=0$

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

8.(a) Prove that $2^{2 n-1} \Gamma(n) \Gamma\left(n+\frac{1}{2}\right)=\Gamma(2 n) \sqrt{\pi}$.
(b) By using beta and gamma functions evaluate $\int_{0}^{1} \frac{d x}{\left(1-x^{3}\right)^{\frac{1}{3}}}$.

$$
[7 \mathrm{M}+8 \mathrm{M}]
$$

