II B. Tech I Semester, Regular Examinations, Nov - 2012 MATHEMATICS - III

(Com. to CE, CHEM, BT, PE)

1. a) Prove that $\int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) d x=0$, if $\alpha \neq \beta$.
b) Prove that $\int_{-1}^{1} x^{m} p_{n}(x) d x=0$ if $\mathrm{m}<\mathrm{n}$ using Rodrigue's formula.
($8 \mathrm{M}+7 \mathrm{M}$)
2. a) Derive the necessary and sufficient condition for $f(z)$ to be analytic in Cartesian coordinates.
b) Find the conjugate harmonic of $u=e^{x^{2}-y^{2}}$. Hence find $f(z)$ in terms of z.
($8 \mathrm{M}+7 \mathrm{M}$)
3. a) Write the real and imaginary parts of tanz.
b) Find all the values of $\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^{(1+i \sqrt{3})}$
($8 \mathrm{M}+7 \mathrm{M}$)
4. a) Evaluate $\oint_{C} \frac{z-3}{z^{2}+2 z+5} d z$ where C is $|z+1-\mathrm{i}|=2$ using Cauchy's Integral formula.
b) Verify Cauchy's theorem for the function $f(z)=3 z^{2}+i z-4 \quad$ if C is the square with vertices at $1 \pm i$ and $-1 \pm i$.
($7 \mathrm{M}+8 \mathrm{M}$)
5. a) Find the Taylor's series expansion of cosz about $z=\pi i$.
b) Expand the Laurent series of $\frac{z^{2}-1}{(z+2)(z+3)}$ for $|z|>3$.
($8 \mathrm{M}+7 \mathrm{M}$)
6. a) Define pole and determine the residues at each pole for f $f(z)=\frac{z^{2}}{(z+1)^{2}(z+2)}$.
b) Expand $f(z)=\frac{e^{z}}{(z-1)^{2}}$ as a Laurent series about $\mathrm{z}=2$ and hence find the residue at that point.
(7M+8M)
7. a) State and prove Rouche's theorem.
b) Show that the equation $\mathrm{z}^{4}+4(1+\mathrm{i}) \mathrm{z}+1=0$ has one root in each quadrant.
8. a) Define transformation. Under the transformation $\omega=\frac{1}{z}$ find the image of the circle $|z-2 \mathrm{i}|=2$.
b) Find the bilinear transformation which maps the points ($1, i,-1$) into the points $(0,1, \infty)$

II B. Tech I Semester, Regular Examinations, Nov - 2012
 MATHEMATICS - III

(Com. to CE, CHEM, BT, PE)
Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions
 All Questions carry Equal Marks

1. a) Prove that $J_{n}(-x)=(-1)^{n} J_{n}(x)$ where ' n ' is a positive or '-‘ve integer.
b) Prove that $\int_{-1}^{1} p_{m}(x) p_{n}(x) d x=0$ if $m \neq n$.
$(8 \mathrm{M}+7 \mathrm{M})$
2. a) Show that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \log \left|f^{1}(z)\right|=0$ where $\mathrm{f}(\mathrm{z})$ is an analytic function.
b) Prove that $u=x^{2}-y^{2}-2 x y-2 x+3 y$ is harmonic find $f(z)=u+i v$.
($8 \mathrm{M}+7 \mathrm{M}$)
3. a) Separate the real and imaginary parts of $\tan \mathrm{hz}$.
b) If $\tan (\log (\mathrm{x}+\mathrm{iy}))=\mathrm{a}+\mathrm{ib}$ where $a^{2}+b^{2} \neq 1$. Show that $\frac{2 a}{1-a^{2}-b^{2}}=\tan \left(\log \left(x^{2}+y^{2}\right)\right)$.
(7M+8M)
4. a) Verify Cauchy's theorem, for the integral of z^{3} taken over the boundary of the rectangle with vertices $-1,1,1+i,-1+i$.
b) Use Cauchy's integral formula $\oint_{\mathcal{C}} \frac{z^{3}-2 z+1}{(z-i)^{2}} d z$ where C is the circle $|z|=2$.
($8 \mathrm{M}+7 \mathrm{M}$)
5. a) Define circle of convergence and find the Taylor's series expansion of $f(z)=\frac{1}{z}$ about the point $\mathrm{z}=1$.
b) Obtain the Laurent's series expansion of $f(z)=\frac{e^{z}}{z(1-z)}$ about $\mathrm{z}=1$.
($8 \mathrm{M}+7 \mathrm{M}$)
6. a) Define Residue at a pole of order m .
b) Show that $\int_{0}^{\pi} \frac{d \theta}{a^{2}+\sin ^{2} \theta}=\frac{\pi}{a \sqrt{1+a^{2}}}$ for $a>0$.
(7M+8M)
7. a) State Rouche's theorem and use it to find the no. of zeros of the polynomial $z^{8}-4 z^{5}+z+1$ that lie inside the circle $|z|=1$.
b) State and prove Liouville's theorem.
($8 \mathrm{M}+7 \mathrm{M}$)
8. a) Define conformal mapping.

Find the image of the circle $|z|=2$, under the transformation $\omega=z+3+2 i$.
b) Determine the Bilinear transformation which maps $\mathrm{z}=0,2 \mathrm{i},-2 \mathrm{i}$ into $\omega=-1,0, \infty$
(7M+8M)

II B. Tech I Semester, Regular Examinations, Nov - 2012
 MATHEMATICS - III

(Com. to CE, CHEM, BT, PE)
Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions

All Questions carry Equal Marks

1. a) Prove that $J_{3 / 2}(x)=\sqrt{\frac{2}{\pi x}}\left[\frac{1}{x} \sin x-\cos x\right]$.
b) Show that $x^{3}=\frac{2}{5} p_{3}(x)+\frac{3}{5} p_{1}(x)$.
$(8 \mathrm{M}+7 \mathrm{M})$
2. a) Prove that if $u=x^{2}-y^{2}, v=\frac{-y}{x^{2}+y^{2}}$ both u and v satisfy Laplace's equation, but $u+i v$ is not regular (analytic) function of z.
b) Find the analytic function whose real part is $y+e^{x}$ cosy.
($8 \mathrm{M}+7 \mathrm{M})$
3. a) Find the real part of the principal value of $i^{\log (1+i)}$.
b) Prove that $\tan ^{-1} z=\frac{i}{z} \log \left(\frac{i+z}{i-z}\right)$
$(8 \mathrm{M}+7 \mathrm{M})$
4. a) Show that $\oint_{C}(z+1) d z=0 \quad$ where C is the boundary of the square whose vertices at the points $\mathrm{z}=0, \mathrm{z}=1, \mathrm{z}=1+\mathrm{i}, \mathrm{z}=\mathrm{i}$.
b) Evaluate $\oint_{C} \frac{e^{z} d z}{(z+1)^{4}}$ around $\mathrm{c}:|\mathrm{z}-1|=3$.
$(8 \mathrm{M}+7 \mathrm{M})$
5. a) Define power series and expand $f(z)=\frac{z-1}{z+1}$ in Taylor's series about the point $\mathrm{z}=0$.
b) Define the different types of singularities.
($8 \mathrm{M}+7 \mathrm{M})$
6. a) State and prove Cauchy's residue theorem.
b) Find the residue of $f(z)=\frac{z^{3}}{(z-1)^{4}(z-2)(z-3)} \quad$ at $\mathrm{z}=0.5$.
$(8 \mathrm{M}+7 \mathrm{M})$
7. a) If the real number a $>e$, prove by using Rouche's theorem, that the equation $e^{z}=a z^{n}$ has n roots inside the unit circle.
b) State and prove 'Fundamental theorem of Algebra'.
$(8 \mathrm{M}+7 \mathrm{M})$
8. a) Find the image of $|\mathrm{z}|=2$ under the transformation $\omega=3 z$.
b) Determine the bilinear transformation that maps the points $1-2 \mathrm{i}, 2+\mathrm{i}, 2+3 \mathrm{i}$, respectively into $2+2 i, 1+3 i, 4$.
($8 \mathrm{M}+7 \mathrm{M}$)

II B. Tech I Semester, Regular Examinations, Nov - 2012 MATHEMATICS - III

(Com. to CE, CHEM, BT, PE)

Answer any FIVE Questions
 All Questions carry Equal Marks

1. a) Prove that $e^{\frac{x}{2}\left(t-\frac{1}{t}\right)}=\sum_{n=-\infty}^{\infty} t^{n} J_{n}(x)$.
b) Prove that $(2 n+1) p_{n}(x)=p_{n+1}^{1}(x)-p_{n-1}^{1}(x)$.
($8 \mathrm{M}+7 \mathrm{M}$)
2. a) Show that $\mathrm{f}(\mathrm{x})=\cos \mathrm{z}$ is analytic everywhere in the complex plane and find $f^{1}(z)$.
b) Show that the function $u=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$ is harmonic and find its conjugate. $\quad(8 \mathrm{M}+7 \mathrm{M})$
3. a) Find all the roots of the equation $\cos \mathrm{z}=2$.
b) If $\cosh (u+i v)=x+i y$ then prove that:

$$
\frac{x^{2}}{\cosh ^{2} u}+\frac{y^{2}}{\sinh ^{2} u}=1
$$

($8 \mathrm{M}+7 \mathrm{M}$)
4. a) Evaluate $\int_{1-i}^{2+i}(2 x+1+i y) d z$ along the straight line joining $(1,-\mathrm{i})$ and $(2, \mathrm{i})$.
b) Evaluate $\int_{C} \frac{e^{z}}{\left(z^{2}+\pi^{2}\right)^{2}} d z$ where C is $|z|=4$.
($8 \mathrm{M}+7 \mathrm{M})$
5. a) Find the Maclaurin's series expansion of $f(z)$ for $\log (i+z)$.
b) Let $f(z)=\frac{1}{(1-z)(z-2)}, \quad$ write the Laurent series expansion in $|z|>2$.
($8 \mathrm{M}+7 \mathrm{M}$)
6. a) Show that $\int_{0}^{\pi} \frac{d \theta}{a+b \cos \theta}=\frac{\pi}{\sqrt{a^{2}-b^{2}}}(a>b>0)$.
b) Find the poles of the function $f(z)=\frac{1}{(z+1)(z+3)}$ and residues at these poles. $\quad(8 \mathrm{M}+7 \mathrm{M})$
7. a) Show that the equation $z^{4}+4(1+i) z+1=0$ has one root in each quadrant.
b) State and prove argument principle.
($8 \mathrm{M}+7 \mathrm{M}$)
8. a) Show that the relation $\omega=\frac{5-4 z}{4 z-2}$ transform the circle $|z|=1$ into a circle of radius unity in the ω-plane.
b) Define Bilinear transformation. Find the bilinear transformation that maps the points $(\infty, i, 0)$ in to the points $(0, i, \infty)$
($8 \mathrm{M}+7 \mathrm{M}$)

