I B.Tech I Semester Supplementary Examinations June - 2012 MATHEMATICS - I
(Common to All Branches)

Time: 3 hours

Max. Marks : 75

Answer any FIVE Questions All Questions carry equal marks

$* * * * *$
1.(a) Solve
(i) $\frac{y d x-x d y}{x^{2}}+e^{y} d y=0$
(ii) $\frac{y d x-x d y}{x y}+2 x \sin x^{2} d x=0$
(b) Find the orthogonal trajectories of the family of parabolas through origin and foci on y-axis

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

2. Solve $\left(D^{3}+2 D^{2}+D\right) y=e^{2 x}+x^{2}+x+\sin 2 x$
3.(a) Using Rollis Theorem show that $g(x)=8 x^{3}-6 x^{2}-2 x+1$ has a zero between 0 and 1 .
(b) If $\mathrm{u}=\frac{\mathrm{yz}}{\mathrm{x}}, \mathrm{v}=\frac{\mathrm{xz}}{\mathrm{y}}, \mathrm{w}=\frac{\mathrm{xy}}{\mathrm{z}}$ find $\frac{\partial(\mathrm{u}, \mathrm{v} \cdot \mathrm{w})}{\partial(\mathrm{x}, \mathrm{y}, \mathrm{z})}$.

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

4.(a) Trace the curve $r=a \sin 2 \theta$
(b) Trace the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

5.(a) Find length of the arc of the parabola $y^{2}=4 a x$ measured from the vertex to both extremities of the latus rectum.
(b) Find the volume formed by the revolution of the loop of the curve $y^{2}(a+x)=x^{2}(3 a-x)$ about x-axis.

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

6.(a) Evaluate the integral by changing the order of integration $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d y d x$
(b) Evaluate $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} d x d y d z$

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

7.(a) Find div. \bar{f} when $\bar{f}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$
(b) Show that the vector $\left(x^{2}-y z\right) i+\left(y^{2}-z x\right) j+\left(z^{2}-x y\right) \bar{k}$ is irrotational and find its scalar potential.

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

8. Verify stokes theorem for $\bar{f}=-y^{3} i+x^{3} j$, where s is the circular disc $x^{2}+y^{2} \leq 1, z=0$

Page 1 of 1.

Subject Code-: R10102/R10

I B.Tech I Semester Supplementary Examinations June - 2012 MATHEMATICS - I
(Common to All Branches)

Time: 3 hours

Max. Marks : 75

Answer any FIVE Questions All Questions carry equal marks

$* * * * *$
1.(a) Solve $\frac{x d y}{d x}+y=x^{2} y^{6}$.
(b) Find the orthogonal trajectories of family of curves given by $y=K x^{2}$, where K is arbitrary.

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

2.(a) Solve $\left(D^{2}+4 D+4\right) y=e^{-x} \sin 2 x$.
(b) Solve $\left(D^{2}+9\right) y=\cos 3 x$.

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

3.(a) Find the maximum and minimum values of $f(x)=x^{3}+y^{3}-3 a x y$.
(b) If $x=\frac{u^{2}}{v}, y=\frac{v^{2}}{u}$ find $\frac{\partial(u, v)}{\partial(x, y)}$.

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

4.(a) Trace the curve $y^{2}=(x-2)(x-4)^{2}$.
(b) Trace the curve $\mathrm{x}=\mathrm{a}(\theta-\sin \theta), \mathrm{y}=\mathrm{a}(1+\cos \theta)$.

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

5.(a) Find the length of the curve $3 x^{2}=y^{3}$ between $y=0$ and $y=1$
(b) Find the surface area of the solid formed by revolving the cardiod $r=a(1-\cos \theta)$ about the initial line.

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

6.(a) Evaluate $\iint \mathrm{r} \sin \theta \operatorname{drd} \theta$ over the cardiod $\mathrm{r}=\mathrm{a}(1-\cos \theta)$ above the initial line.
(b) Evaluate $\iiint_{V} d x d y d z$ where V is the region banded by the planes $x=0, y=0, z=0$ and $2 \mathrm{x}+3 \mathrm{y}+4 \mathrm{z}=12$.

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

7.(a) Find a unit normal vector to the given surface $x^{2} y+2 x z=4$ at the point $(2,-2,3)$.
(b) Prove that div $(\overline{\mathrm{a}} \times \overline{\mathrm{b}})=\overline{\mathrm{b}} . \operatorname{curl} \overline{\mathrm{a}}-\overline{\mathrm{a}}$. curl $\overline{\mathrm{b}}$

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

8. Verify Green's theorem for $\int_{c}\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y\right]$ where C is the region bounded by $x=0, y=0$ and $x+y=1$.

Page 1 of 1.

Subject Code-: R10102/R10

I B.Tech I Semester Supplementary Examinations June - 2012 MATHEMATICS - I
(Common to All Branches)

Time: 3 hours

Max. Marks : 75

Answer any FIVE Questions All Questions carry equal marks

* * * * *

1.(a) Solve $\frac{d y}{d x}+y=y^{2} \log x$.
(b) If the air is maintained at $15^{\circ} \mathrm{c}$ and the temperature of the body drops from $70^{\circ} \mathrm{c}$ to $40^{\circ} \mathrm{c}$ in 10 minutes, what will be its temperature after 30 minutes.

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

2.(a) Solve $\left(D^{3}-3 D^{2}+4 D-2\right) y=e^{x}$.
(b) Solve $\left(D^{2}+2 D+2\right) y=e^{-x}+\sin 2 x$.

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

3.(a) Examine whether Rolle's theorem is applicable for the function $f(x)=\tan x$ in $(0, \pi)$.
(b) Find the shortest distance from the point $(1,0)$ to the parabola $y^{2}=4 x$.

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

4.(a) Trace the curve $r=a \cos 2 \theta$
(b) Trace the curve $\mathrm{y}=\mathrm{a} \cosh \mathrm{x} / \mathrm{a}$
5.(a) Find the area of surface of revolution generated by revolving one arc of the curve $y=\sin x$ about x-axis.
(b) Find entire length of the curve $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$.
$[8 M+7 M]$
6.(a) Evaluate $\iint_{R} x y d x d y$ where R is the region bounded by x-axis, ordinate $x=2 a$ and the curve $x^{2}=4$ ay.
(b) Change the order of integration $\int_{0}^{\pi / 2} \int_{0}^{2 a \cos \theta} f(r, \theta) d r d \theta$.
$[8 \mathrm{M}+7 \mathrm{M}]$
7.(a) Find the directional derivative of $2 x y+z^{2}$ at $(1,-1,3)$ in the direction of $i+2 j+3 k$.
(b) Prove that curl $(\operatorname{grad} \phi)=\overline{0}$.

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

8. Verify stokes theorem for $\overline{\mathrm{F}}=\mathrm{y} \overline{\mathrm{i}}+\mathrm{z} \overline{\mathrm{j}}+\mathrm{x} \overline{\mathrm{k}}$ and surface is part of the sphere $x^{2}+y^{2}+z^{2}=1$ above $x y-$ plane.

Page 1 of 1.

Subject Code-: R10102/R10

I B.Tech I Semester Supplementary Examinations June - 2012 MATHEMATICS - I
(Common to All Branches)

Time: 3 hours

Max. Marks : 75

Answer any FIVE Questions All Questions carry equal marks

$* * * * *$
1.(a) Solve $1+y^{2}+\left(x-e^{\tan ^{-1} y}\right) \frac{d y}{d x}=0$
(b) Find the orthogonal trajectories of the cardiods $r=a(1-\cos \theta)$ for different values of a.

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

2.(a) Solve the differential equation $\left(D^{2}+1\right) y=\sin x \sin 2 x$.
(b) Solve $\left(D^{2}+4 D+4\right) y=e^{-x} \sin 2 x$
$[8 \mathrm{M}+7 \mathrm{M}]$
3.(a) If $u=x^{2}-2 y, \quad v=x+y+z, \quad w=x-2 y+3 z$, find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$
(b) Obtain the expansion of $e^{x} \sin y$ in powers of x and y.

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

4.(a) Trace the curve $y^{2}(a-x)=x^{3}(a>0)$
(b) Trace the curve $\mathrm{r}=\mathrm{a}(1+\cos \theta)$.

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

5.(a) Find the length of the arc of the parabola $x^{2}=4 a y$ from vertex to one extremity of the latus rectum.
(b) Find the volume formed by the revolution of the loop of the curve $y^{2}(a+x)=x^{2}(3 a-x)$ about x -axis.

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

6.(a) Evaluate $\iint\left(x^{2}+y^{2}\right)$ dxdy in the positive quadrant for which $x+y \leq 1$.
(b) Change the order of integration and evaluate $\int_{0}^{4 a} \int_{x^{2} / 4 a}^{2 \sqrt{a x}} d y d x$.
$[8 M+7 M]$
7.(a) Find the values of a and b so that the surfaces $a x^{2}-b y z=(a+2) x$ and $4 x^{2} y+z^{3}=4$ may intersect orthogonally at the point $(1,-1,2)$.
(b) Prove that curl $(\phi \bar{a})=(\operatorname{grad} \phi) x \bar{a}+\phi \operatorname{curl} \bar{a}$.

$$
[8 \mathrm{M}+7 \mathrm{M}]
$$

8. Verify Gauss divergence theorem for $\overline{\mathrm{F}}=\left(x^{3}-y z\right) \overline{\mathrm{i}}-2 x^{2} y \overline{\mathrm{j}}+\mathrm{z} \overline{\mathrm{k}}$ taken over the surface of the cube bounded by planes $\mathrm{x}=\mathrm{y}=\mathrm{z}=\mathrm{a}$ and co-ordinate planes.

Page 1 of 1.

