Code: R7100204

R7

B.Tech I Year (R07) Supplementary Examinations, June 2013

MATHEMATICAL METHODS

(Common to EEE, ECE, ME, CSE, EIE, IT, E.Con.E, ECC and CSS)

Time: 3 hours Max Marks: 80

Answer any FIVE questions
All questions carry equal marks

1 (a) Find the rank of:

$$A = \begin{bmatrix} -2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$$
 by reducing into Echlon form.

(b) Solve the system of equations:

$$x + 3y - 2z = 0$$

2x - y + 4z = 0
$$x - 11y + 14z = 0$$

- 2 (a) Prove that Eigen values of Hermitian matrix are real.
 - (b) Find the Eigen values and Eigen vectors of matrix:

$$A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$$

- Reduce the quadratic form $6x^2 + 3y^2 + 3z^2 4xy 2yz + 4zx$. To canonical form by orthogonal transformation. And hence find its rank, index and signature.
- 4 (a) Find a real roof of $xe^x = 2$ using Regula Falsi method.
 - (b) Use Lagrange's interpolation formula, find the value of f(3) from the following table.

<i>x</i> :	0	1	2	4	5	6
f(x):	1	14	15	5	6	19

5 (a) Fit a parabola of the form, $y = a + bx + cx^2$ to the following data:

х	1	2	3	4	5	6	7
y	23	5.2	9.7	16.5	29.4	35.5	54.4

(b) The population of a certain town is shown in the following table. Find the rate of growth of the population in 1981:

year (x)	1951	1961	1971	1981	1991
population (y)	40.62	60.80	79.95	103.56	132.65

Contd. in Page 2

Code: R7100204

- Using R-k method, find y(0.2), y(0.4) for the equation $\frac{dy}{dx}=\frac{y^2-x^2}{y^2+x^2}1y(0)=1$ taking h=0.1.
- 7 (a) Find the Fourier series for the function: $f(x) = \begin{cases} x, & 0 < x < 1 \\ 1 x, & 1 < x < 2 \end{cases}$ and hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots \frac{\pi^2}{8}$.
 - (b) Find the Fourier cosine transform of $\frac{1}{1+x^2}$.
- 8 (a) Solve $(x^2 yz)p + (y^2 2x)q = z^2 xy$.
 - (b) Solve $u_{n+2} + 3u_{n+1} + 2u_n = 0$, $u_0 = 0$, $u_1 = 1$.

