Code: R7210101

Max Marks: 80

B.Tech II Year I Semester (R07) Supplementary Examinations, May 2013

MATHEMATICS - II

(Common to CE and BT)

Time: 3 hours

Answer any FIVE questions

All questions carry equal marks

1 (a) Reduce the matrix A to the normal form of PAQ and hence find its rank given:

- $\mathsf{A} = \begin{bmatrix} 3 & 2 & -1 & 5 \\ 5 & 1 & 4 & -2 \\ 1 & -4 & 11 & -19 \end{bmatrix}.$
- (b) Find the values of λ for which equations:

 $(\lambda - 1)x + (3\lambda + 1)y + 2\lambda z = 0,$ $(\lambda - 1)x + (4\lambda - 2)y + (\lambda + 3)z = 0,$

$$2x + (3\lambda + 1)y + 3(\lambda - 1)z = 0.$$

are consistent, and find the ratios of x: y: z when λ has the smallest of these values. What happens when λ has the greater of these values.

- 2 (a) If λ is the eigen values of matrix A, then prove that eigen values of $A^{-1}is \frac{1}{\lambda}$.
 - (b) Show that the matrix $A = \begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$ is diagonalizable.

3 (a) Show that the matrix $\begin{bmatrix} \cos\phi & 0 & \sin\phi \\ \sin\theta \sin\phi & \cos\theta & -\sin\theta \cos\phi \\ -\cos\theta \sin\phi & \sin\theta & \cos\phi \end{bmatrix}$ is an orthogonal matrix.

- (b) Reduce the quadratic form $3x^2 + 3y^2 + 3z^2 + 2xy + 2xz 2yz$ to canonical form by orthogonal transformation.
- 4 (a) Find the Fourier series for $f(x) = e^{-x}$ in $0 < x < 2\pi$.
 - (b) Find the half-range sine series for $f(x) = \cos x in (0, \pi)$.
- 5 (a) Form the partial differential equation by eliminating the arbitrary function from the following: (i) $z = xy + f(x^2 + y^2)$ (ii) $lx + my + nz = f(x^2 + y^2 + z^2)$ (b) Solve: $mx^2 + ay^2 = z^2$

(b) Solve: $px^2 + qy^2 = z^2$.

Contd. in Page 2

Page 1 of 2

www.FirstRanker.com

Code: R7210101

- 6 (a) Solve by the method of separation of variables $2x \frac{\partial z}{\partial x} 3y \frac{\partial z}{\partial y} = 0$.
 - (b) A tightly stretched string with fixed and points x = 0 and x = l is initially at rest in its equilibrium. If it is vibrating by giving to each of its points a velocity $\mu x(l-x)_1$ find the displacement of the string at any distance x from one and at any time f.
- 7 (a) Express the function $f(x) = \begin{cases} 1, & |x| \le |\\ 0, & |x| > | \end{cases}$ as Fourier integral. Hence evaluate $\int_0^\infty \frac{\sin\lambda \cos\lambda x}{\lambda} d\lambda$.
 - (b) Find the sine and cosine transform of $2e^{-3x} + 3e^{-2x}$.
- 8 (a) Find: (i) $z \left[\cos \frac{n\pi}{2} \right]$. (ii) $z \left[\sin \frac{n\pi}{2} \right]$. (iii) $z^{-1} \left[\frac{z+2}{z^2-5z+6} \right]$. (b) Solve: $y_{n+2} - 7 y_{n+1} - 8 y_n = 2^n n^2 by z - transform$.

Page 2 of 2