Code No. N0221	R07	Set No. 1					
IV B.Tech I Semester Supplementary Examinations, February/March, 2012 NEURAL NETWORKS AND FUZZY LOGIC (Common to Electrical & Electronics Engineering, Instrumentation & Control Engineering and Aeronautical Engineering)							
Time: 3 hours		Max. Marks: 80					
P	Answer any FIVE Questions All Questions carry equal marks *****						
1. a) Describe in detail abou	t biological and artificial neuron models.	٥١ ، ٥٦					
 a)Elucidate in detail abou 	t the different architectural styles of artifici	al neural networks					
b) Explain about Activation	on and synaptic neural dynamics in detail.	[8+8]					
3. a) Discuss about discrete	and continuous perceptron models.						
b) Give a detailed notes o	n single layer feed forward neural network	s. [8+8]					
4. a) What is the significancb) What is back propagatifeed forward neural neural	e of generalized delta rule? Explain in deta ion? Derive its learning algorithm with a sc etwork.	il. hematic two layer [8+8]					
5. a) Discuss different paradb) Explain how linear ass	ligms of associative memory. ociator networks could not suppress cross t	erms due to noise. [8+8]					

1 of 2

www.FirstRanker.com

6. a) X={ x_1, x_2, x_3 } Y={ y_1, y_2 } Z={ z_1, z_2, z_3 } Let \tilde{R} be a fuzzy relation 0.2 0.9

0.8 0.6

0.5 0.1

where X represents rows, Y represents columns. Let \tilde{S} be the fuzzy relation

$$\begin{bmatrix} 0.6 & 0.4 & 0.7 \\ 0.5 & 0.8 & 0.9 \end{bmatrix}$$

where Y represents rows, Z represents columns. Find $\mathbf{R} \circ \mathbf{S}$ by max-min composition.

- b) Write the mathematical expression of the membership function and sketch of the membership function. [8+8]
- 7. a) Given
 - (i) $\mathbf{C} \lor \mathbf{D}$
 - (ii) (ii) $\neg H \Rightarrow (A \land \neg B)$
 - $(iii)(\mathbf{C} \vee \mathbf{D}) \Longrightarrow \neg H$
 - $(iv)(A \land \neg B) \Longrightarrow (R \lor S)$
 - (v) Can $(\mathbf{R} \lor S)$ be inferred from the above?
 - b) If an item has partial membership in several sets, would all membership values add up to unity? [8+8]
- 8. Explain the application of ANNs for the following a) Load forecasting
 - b) Process identification

[8+8]

2 of 2

Co	ode No. N0221 R07	Set No. 2				
IV B.Tech I Semester Supplementary Examinations, February/March, 2012 NEURAL NETWORKS AND FUZZY LOGIC						
(Con	(Common to Electrical & Electronics Engineering, Instrumentation & Control Engineering					
Ti	me: 3 hours	Max. Marks: 80				
	Answer any FIVE Questions All Questions carry equal marks *****					
1.	 a) Describe in detail about the organization of human brain. b) Explain about the following neuron models i) Mc-Culloh Pitts model ii) Spiking neuron model 	[8+8]				
2.	a) Explain about the taxonomy of artificial neural networks.b) Describe about the operations of artificial neuron in detail.	[8+8]				
3.	a) State perceptron convergence theorem in detail.b) Give in detail applications of feed forward single layer neural netwo	rk. [8+8]				
4.	a) Derive and explain back propagation training algorithm.b) Explain the modifications suggested to back propagation network.	[8+8]				
5.	a) Explain about linear associator and matrix memories in detail.b) Explain in detail about architectures of discrete and continuous version networks.	ons of Hopfield [8+8]				
6.	 a) Explain in detail about membership functions in fuzzy logic with an b) The task is to recognize English alphabetical characters (F,E,X,Y,I,T) processing system. Define two fuzzy sets <i>I</i> and <i>F</i> to represent the characters I and F. <i>I</i> = {(F,0.4),(E,0.3),(X,0.1),(Y,0.1),(I,0.9),(T,0.8)} <i>F</i> = {(F,0.99),(E,0.8),(X,0.1),(Y,0.2),(I,0.5),(T,0.5)} Find the following. 	example.) in an image identification of				
	(i) $\tilde{I} \cup \tilde{F}$ (ii) $(\tilde{I} - \tilde{F})$ (iii) $\tilde{F} \cup \tilde{F}^{c}$	[8+8]				
7.	a) What is meant by defuzzification? Discuss few widely used methodsb) Discuss about fuzzy rule base for the air conditioner control in detail	of defuzzification. [. [8+8]				
8.	a) Briefly discuss about the applications of neural networks.b) Explain briefly about the process identification with reference to the and plant inverse identification.	feed forward [8+8]				

1 of 1

Code No. N0221

Set No. 3

	IV B.Tech I Semester Supplementary Examinations, February/March, 2012 NEURAL NETWORKS AND FUZZY LOGIC			
(Com	amon to Electrical & Electronics Engineering, Instrumentation & Control Engine and Aeronautical Engineering	ering		
Time: 3 hours Max. M				
	Answer any FIVE Questions All Questions carry equal marks *****			
1.	a) Discuss in detail about Spiking neuron model.b) Explain in detail about the organization of human brain.	[8+8]		
2.	a) Explain different learning strategies of artificial neural networks.b) Give classification of some NN systems with respect to learning methods and architectural styles.	[8+8]		
3.	a) Discuss in detail about Rosenblatt perceptron model. Explain about linearly separate and nonlinearly separable patterns.b) Discuss in detail about limitations of perceptron model.	ble [8+8]		
4.	a) Give and explain about the architecture and algorithm of back propagation networkb) Which criteria is followed to decide the number of neurons in back propagation network	[8+8]		
5.	a) Explain in detail about the energy analysis of discrete Hopfield networks.b) Describe in detail about bidirectional associative memory architecture with a block diagram.	[8+8]		
6.	a) The task is to recognize English alphabetical characters (F,E,X,Y,I,T) in an image processing system. Define two fuzzy sets \tilde{I} and \tilde{F} to represent the identification characters I and F.	of		
	$\widetilde{I} = \{(F,0.4), (E,0.3), (X,0.1), (Y,0.1), (I,0.9), (T,0.8)\}$ $\widetilde{F} = \{(F,0.99), (E,0.8), (X,0.1), (Y,0.2), (I,0.5), (T,0.5)\}$ Find the Verify De-Morgan's Law, $(\widetilde{I} \cup \widetilde{F})^c = \widetilde{I}^c \cap \widetilde{F}^c$ b) Describe in detail about the cardinalities and relative cardinalities in fuzzy sets.	[8+8]		
7.	a) Describe in detail about fuzzy logic system components.b) Discuss in detail about the maxima method with an example.	[8+8]		
8.	a) Mention the applications of fuzzy logic in ovens.b) Design and develop a pressure process control by FLC model. Formulate necessary Membership functions and required fuzzy rules for the application.	/ [8+8]		
	1 of 1			

R07

1 of 1

www.FirstRanker.com

Co	ode No. N0221 R07 Set No.	Set No. 4						
(Cor	IV B.Tech I Semester Supplementary Examinations, February/March, 2012 NEURAL NETWORKS AND FUZZY LOGIC nmon to Electrical & Electronics Engineering, Instrumentation & Control Engine and Aeronautical Engineering	eering						
Ti	Time: 3 hours Max. Marks:							
	Answer any FIVE Questions All Questions carry equal marks *****							
1.	a) Describe in detail about the characteristics of artificial neural networks.b) Explain in detail about Hodgkin-Huxley neuron model.	[8+8]						
2.	a)What is the signification of activation function in learning of artificial neural networ and discuss different types of activation functions .b) Briefly explain about recurrent networks and give its architectural diagram.	rks [8+8]						
3.	 a) Give an algorithm for fixed increment perceptron learning algorithm for a classification problem with n input features(x1,x2xn) and two output classes(0/1). b) Discuss in detail about training algorithms of continuous perceptron networks. 	ation [8+8]						
4.	 a) Give suggestions to improve and modify back propagation network. b) Prove that for n=2, the number of hidden layer neurons j needed for hyper plane partition into M regions is j=1/2 [(8M-7)^{1/2}-1] 	[8+8]						
5.	a) Give the architecture of Hopfield network for discrete and continuous versions.b) Discuss in detail about hebbian learning and give equations for training the hebbian network.	n [8+8]						
	1 of 2							

Code No. N0221

R07

6. a) Discuss in detail about basic fuzzy set operations. Find the Concentration (CON) and Dilation (DIL) of the following:

 $\widetilde{A} = \{(x_1, 0.4), (x_2, 0.2), (x_3, 0.7)\}$ and $\alpha = 2$

b) Consider a set $P=\{P_1, P_2, P_3, P_4\}$ of four variables of paddy plants ,set $D=\{D_1, D_2, D_3, D_4\}$ of various diseases affecting the plants and $S=\{S_1, S_2, S_3, S_4\}$ be the common symptom of diseases. Let \vec{R} be the relation on P X D and \vec{S} be the relation on D X S.

				7			0.1	0.2	0.7	0.9
Ĩ =	0.6	0.6	0.9	0.8		Ĩ=	1	1	0.4	0.6
	0.1	0.2	0.9	0.8	and		0	0	0.5	0.9
	0.9	0.3	0.4	0.8				1	0.0	0.2
	0.9	0.8	0.1	0.2		1.	0.9		0.8	0.2

Obtain the association of plants with the different symptoms of the diseases using max-min composition. [8+8]

7. a) Choose three fuzzy sets and illustrate the aggregation of the fuzzy sets.b) Given (i) Every soldier is strong-willed.

(ii) All who are strong-willed and sincere will succeed in their career.

(iii) Indira is a soldier.

(iv) Indira is sincere.

Prove whether Indira will succeed in her career or not? [8+8]

8. Describe in detail about process identification and control in neural network applications.

[16]

2 of 2