B.Tech II Year II Semester (R09) Regular \& Supplementary Examinations, April/May 2013

NETWORK THEORY
(Electrical and Electronics Engineering)
Time: 3 hours
Max Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 (a) Write down the advantages of a poly phase system? What is phase sequence? Explain the significance of phase sequence.
(b) A delta connected 3-phase load has a resistance of 10Ω and inductive reactance of 15Ω in each phase. It is fed by 3-phase, $440 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find (i) Apparent power. (ii) Active power. (iii) Reactive power.

2 Show that in the two-wattmeter method of 3-Ф power measurement, the sum of the readings of the two wattmeters gives the total power consumed in 3-Ф circuit. Hence prove: $\Phi=\tan ^{-1}\left(\sqrt{ } 3\left(w_{1}-w_{2}\right) /\left(w_{1}+w_{2}\right)\right)$.
Where Φ is the phase angle of the load and $w_{1} \& w_{2}$ are the readings of the wattmeters.

3 (a) Derive the expression for current when a dc voltage V is applied suddenly (i.e. at time $=$ 0) by closing a switch in a series R-L circuit.
(b) In the circuit shown in fig below, the switch is in position (1) to establish steady state condition and at $t=0$, it is switched to position (2). Find the resulting current.

4 A series RC circuit with $R=100 \Omega$ and $C=25 \mu \mathrm{~F}$ has a sinusoidal voltage $\mathrm{V}=250$ sin $(500 \mathrm{t})$. Find the total current assuming that the capacitor is initially uncharged.

Contd. in Page 2

5 Determine z and y parameters of the network shown below:

6 Find the transmission parameters for the network shown below:

7 Sketch the diagram of a rectangular pulse train. Derive its Fourier series.

8 Discuss the time shifting and frequency shifting properties of Fourier transform.
B.Tech II Year II Semester (R09) Regular \& Supplementary Examinations, April/May 2013 NETWORK THEORY
(Electrical and Electronics Engineering)
Time: 3 hours
Max Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 (a) Derive the relation between phase voltage and line voltage, phase current and line current of a three phase delta connected balanced system.
(b) Three choke coils each having a resistance of 10Ω and inductance 0.019 H are connected in star across a 3-phase, $415 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply.
Find (i) Line current (ii) Power factor and (iii) Power input.
2 Two wattmeters are used to measure the power input in a 3-Ф circuit indicate 1000 W and 500 W respectively. Find the power factor of the circuit:
(i) When both wattmeter readings are positive.
(ii) When the latter is obtained by reversing the current coil connections. Derive the expression for power factor.

3 (a) Derive the expression for current when a dc voltage V is applied suddenly (i.e. at time $=0$) by closing a switch in a series R-L circuit.
(b) In the circuit shown in the below fig. the switch is closed at $t=0$. Find the values of $\mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{di}_{1} / \mathrm{dt}, \mathrm{di}_{2} / \mathrm{dt}, \mathrm{d}^{2} \mathrm{i}_{1} / \mathrm{dt}^{2}$ and $\mathrm{d}^{2} \mathrm{i}_{2} / \mathrm{dt}^{2}$ at $\mathrm{t}=0^{+}$.

Contd. in Page 2

Page 1 of 2
$4 \quad$ In fig shown below with switch open, steady state is reached with $\mathrm{V}=100 \sin$ (314 t) volts. The switch is closed at $t=0$. The circuit is allowed to come to steady state again. Determine the steady state current and complete solution of transient current.

5 Determine the h-parameters for the circuit shown below:

6 Determine the Z-parameters of the two-ports shown below:

7 Sketch the diagram of a saw-tooth wave form. Derive its Fourier series.
8 (a) Derive the Fourier transform of the double-sided exponential $e^{-a(t)}$.
(b) Derive the Fourier transform of saw-tooth pulse, $p(t)=10+[u(t)-u(t-2)]$

Page 2 of 2
B.Tech II Year II Semester (R09) Regular \& Supplementary Examinations, April/May 2013

NETWORK THEORY
(Electrical and Electronics Engineering)
Time: 3 hours
Max Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 (a) Explain the three watt meter method measurement of power with a neat diagram.
(b) Three coils each having a resistance of 20Ω and an inductive reactance of 15Ω are connected in delta and fed by a 3-phase, $400 \mathrm{~V}, 50 \mathrm{~Hz}$ system.
Find (i) Line current (ii) Power and (iii) Power factor

2 A symmetrical 3-phase, 100 V , three wire supply feeds an unbalanced star connected load, with impedances of the load as, $Z_{R}=5 \angle 0^{\circ}$, $Z_{Y}=2 \angle 90^{\circ}$ and $Z_{B}=4 \angle-90^{\circ}$ ohms. Find the (i) Line currents. (ii) Voltage across the impedances. (iii) The displacement neutral voltage by using star-delta conversion method.

3 (a) Obtain the expression for $i(t)$ in a series $R-C$ circuit is exited with a dc voltage source V, when the switch is closed at time $t=0$.
(b) In the circuit shown in fig below, switch ' K ' is closed at $t=0$. Find the values of i, $d i / d t$ and $\mathrm{d}^{2} \mathrm{i} / \mathrm{dt}^{2}$ at $\mathrm{t}=0^{+}$.

4 In the RC circuit shown in the fig below, the capacitor has an initial charge $Q_{0}=25 \times 10^{-6}$ C with polarity as shown. A sinusoidal voltage $V=100 \sin (200 t+\Phi)$ is applied to the circuit at a time corresponding to $\Phi=30^{\circ}$. Determine the expression for the current $\mathrm{i}(\mathrm{t})$.

Contd. in Page 2

Page 1 of 2

5 Find the impedance parameters of the network shown below:

6 Find the y-parameters for the following network.

7 Determine the Fourier series for the half-wave rectified cosine function.
8 Discuss the time integration and Frequency differentiation properties of Fourier transform.
B.Tech II Year II Semester (R09) Regular \& Supplementary Examinations, April/May 2013 NETWORK THEORY
(Electrical and Electronics Engineering)
Time: 3 hours
Max Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 (a) Derive the relation between phase and line values of a three phase delta connected balanced system.
(b) Three inductive coils, each with a resistance of 15Ω and an inductance of 0.03 H are connected in star to three phase, $400 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate (i) phase current and line current. (ii) total power absorbed.

2 Three impedances of $(7+j 4) \Omega ;(3+j 2) \Omega$ and $(9+j 2) \Omega$ are connected between neutral and the red, yellow and blue phases, respectively of a 3-phase, four wire system. The line voltage is 440 V . Calculate (i) The current in each line and (ii) The current in the neutral wire.

3 (a) Derive the expression for $\mathrm{i}(\mathrm{t})$ in a series R-C circuit is exited with a dc voltage source V , when the switch is closed at time $\mathrm{t}=0$.
(b) In the circuit shown in fig below, switch ' K ' is closed at $t=0$. Find the values of i , $\mathrm{di} / \mathrm{dt}$ and $d^{2} i / d t^{2}$ at $t=0^{+}$.

4 In fig shown below with switch open, steady state is reached with $\mathrm{V}=100 \sin$ (314t) volts. The switch is closed at $t=0$. The circuit is allowed to come to steady state again. Determine the steady state current and complete solution of transient current by using Laplace transform method.

Contd. in Page 2

Page 1 of 2

5 Find the h parameters for the network shown below:

6 Find ABCD parameters for the following network:

7 Derive the Fourier series of a half-wave rectified sine wave.
8 Determine the inverse Fourier transform of:
(a) $F(w)=4 \delta(w+3)+\delta(w)+4 \delta(w-3)$
(b) $H(w)=6 \cos 2 w$

Page 2 of 2

