B.Tech III Year I Semester (R09) Supplementary Examinations, May 2013

NUMERICAL METHODS

(Mechatronics)

Time: 3 hours
Max. Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 (a) Find a root of the equation $2 x=\cos x+3$ correct to three decimal places by iteration method.
(b) Find a root of the equation $x^{2}-4 x-10=0$ by using bisection method.

2 (a) Apply Jacobi - iteration method to solve the equations:

$$
\begin{gathered}
3 x_{1}-2 x_{2}=5 ; \\
-x_{1}+2 x_{2}-x_{3}=0 \\
-2 x_{2}+x_{3}=-1
\end{gathered}
$$

(b) Apply Gauss - Jordan method to solve the equations:

$$
\begin{aligned}
& x+y+z=9 \\
& 2 x-3 y+4 z=13 \\
& 3 x+4 y+5 z=40
\end{aligned}
$$

3 (a) Show that:
(i) $\delta=E^{1 / 2}-E^{-1 / 2}$
(ii) $\Delta-\nabla=\Delta \nabla=\delta^{2}$
(iii) $h D=\log (1+\Delta)=-\log (1-\Delta)=\sin h^{-1}(\mu \delta)$.
(b) Use Lagrange's formula to find the form of $f(x)$, given

$x:$	0	2	3	6
$f(x):$	648	704	729	792

4 (a) Fit a straight line of the form $y=a+b x$ to the data:

x	1	2	3	4	6	8
y	2.4	3.1	3.5	4.2	5.0	6.0

(b) Give the data points:

x_{1}	5	4	3	2	1
x_{2}	3	-2	-1	4	0
y	15	-8	-1	26	8

Obtain a regression plane to fit the data.
5 (a) Find the first and second derivatives of $f(x)$ at $x=1.5$ for the following data.

$x:$	1.5	2.0	2.5	3.0	3.5	4.0
$f(x):$	3.375	7	13.625	24	38.875	59

(b) Evaluate $\int_{0}^{\pi / 2} \sqrt{\sin \theta} d \theta$, using Simpson's rule with $h=\pi / 12$.

R09

Code: 9A14501

6 (a) Employ Taylor's series method to obtain approximate value of ' y ' at $x=0.1$ and 0.2 for the differential equation $\frac{d y}{d x}=x-y^{2}, y(0)=1$.
(b) Use Adams - Bashforth method to find y (4, 4), given $5 x y^{1}+y^{2}-2=0, y(4)=1$, $y(4.1)=1.0049, y(4.2)=1.0097, y(4.3)=1.0143$.

7 (a) Find the largest Eigen value and corresponding Eigen vector of the matrix.
$\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$ by power method.
(b) Given the equation $\frac{d^{2} y}{d x^{2}}=e^{x^{2}}$ with $y(0)=0, y(1)=0$. Estimate the values of $y(x)$ at $x=0.25$ and $x=0.5$ by finite - difference method.

Solve the elliptic equation $u_{x x}+u_{y y}=0$ for the following square mesh with boundary values as shown in the figure.

