Set No. 1

# IV B.Tech. II Semester Supplementary Examinations, July/August 2012 OPTIMIZATION TECHNIQUES 

(Electrical and Electronics Engineering)

## Answer any FIVE Questions

All Questions carry equal marks

1. Explain the following:
a) Feasible region
b) Convex set
c) Optimal solution and
d) Sensitivity analysis
2. a) $\operatorname{Min} z=x^{2}+y^{2}$
$2 x+3 y \geq 10$
$3 x+5 y \leq 15$
$x, y \geq 0$
b) What are the drawbacks of classical optimization techniques?
3. Solve the following LPP by Simplex method:

Minimize $\mathrm{z}=3 \mathrm{x}+2 \mathrm{y}$
Subject to $x \geq 4$
$x+3 y \leq 15$
$2 x+y \leq 10$
and $x, y \geq 0$
4. a) Write the LP formulation of a transportation problem.
b) Why is Simplex method not used to solve the transportation problems?

1 of 2

## Set No. 1

5. Minimize the function $f(x)=x^{2}+(54 / x)$ in the interval $[0,5]$ by the Fibonacci search method. Choose the desired number of function evaluations as 3 .
6. Minimize $f(x, y)=x-y+2 x^{2}+2 x y+y^{2}$ with the starting point $(0,0)$ using the Univariate method.
7. Explain Kuhn-Tucker conditions and their significance in constrained optimization problems.
8. Determine the value of $u_{1}, u_{2}, u_{3}$ so as to Maximize $Z=u_{1} u_{2} u_{3}$ subject to the constraints: $\mathrm{u}_{1}+\mathrm{u}_{2}+\mathrm{u}_{3}=10$ and $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3} \geq 0$ using dynamic programming

# IV B.Tech. II Semester Supplementary Examinations, July/August 2012 OPTIMIZATION TECHNIQUES 

(Electrical and Electronics Engineering)

Time: 3 Hours
Max Marks: 80

## Answer any FIVE Questions <br> All Questions carry equal marks

1. Discuss the typical applications of optimization techniques in electrical and electronics engineering.
2. Minimize $f(x, y)=3 x+4 y+2 x^{2}+2 x y+y^{2}$

Subject to $2 x+3 y \leq 6$

$$
4 x+3 y \geq 12
$$

$$
x, y \geq 0
$$

3. a) What are the assumptions involved in Simplex method? Explain.
b) What is Duality? Explain its significance.
4. A company has three production facilities $S_{1}, S_{2}, S_{3}$ with production capacity of 7,9 and 18 units (in 100s) per week of a product, respectively. These units are to be shipped to four warehouses $D_{1}, D_{2}, D_{3}, D_{4}$ with the requirement of $5,6,7$ and 14 units (in 100s) per week, respectively. The transportation costs (in rupees) per unit between factories to warehouses are given in the table below:

|  | $\mathrm{D}_{1}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{4}$ | capacity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{1}$ | 19 | 30 | 50 | 10 | 7 |
| $\mathrm{~S}_{2}$ | 70 | 30 | 40 | 60 | 9 |
| $\mathrm{~S}_{3}$ | 40 | 8 | 70 | 20 | 18 |
| Demand | 5 | 8 | 7 | 14 | 34 |

Determine the optimal assignment of products in order to reduce the total transportation cost.

## Code No: K0224

5. Minimize the function $f(x)=0.65-\left[0.75 /\left(1+x^{2}\right)\right]-0.65 x^{-1} \tan ^{-1}(1 / x)$ in the interval $[0,3]$ by the Fibonacci search method. Choose the desired number of function evaluations as 6 .
6. Explain the basic idea behind Powell's method and consider the minimization of the function $f(x, y)=6 x^{2}+2 y^{2}-6 x y-x-2 y$. If $s_{1}=\{12\}$ denotes the search direction, find a direction $\mathrm{s}_{2}$ which is conjugate to the direction s 1 .
7. Minimize $f(x, y)=(x-1)^{2}$ subject to $g_{1}(x)=2-x \leq 0$ and $g_{2}(x)=x-4 \leq 0$ using interior penalty function method,
8. Minimize $\mathrm{Z}=\mathrm{y}_{1}{ }^{2}+\mathrm{y}_{2}{ }^{2}+\mathrm{y}_{3}{ }^{2}$ subject to the constraint $\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3} \geq 15$ and $\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3} \geq 0$ using dynamic programming.

## Set No. 3

IV B.Tech. II Semester Supplementary Examinations, July/August 2012 OPTIMIZATION TECHNIQUES
(Electrical and Electronics Engineering)

Time: 3 Hours
Max Marks: 80

## Answer any FIVE Questions All Questions carry equal marks

1. Discuss the following:
a) Redundant Constraints
b) Post-optimality analysis
c) Basic solution and
d) Degeneracy
2. a) Explain the geometrical interpretation of Lagrange multipliers.
b) $\operatorname{Max} z=x^{2}+y^{2}$
$10 \leq x \geq 20$ and
$0 \leq y \geq 10$
3. Solve following using the Simplex method:
$\operatorname{Max} z=3 x+4 y$
Subject to
$x+3 y \geq 15$
$2 x+3 y \leq 30$
$x, y \geq 0$

## Code No: K0224

## Set No. 3

4. Determine the optimal solution of the following transportation problem:

|  | $\mathrm{D}_{1}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{4}$ | capacity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{1}$ | 21 | 16 | 15 | 3 | 11 |
| $\mathrm{~S}_{2}$ | 17 | 18 | 14 | 23 | 13 |
| $\mathrm{~S}_{3}$ | 32 | 27 | 18 | 41 | 19 |
| Demand | 6 | 10 | 12 | 15 | 43 |

5. Write an algorithm for quadratic interpolation method and find the minimum of $f(x)=x^{5}-5 x^{3}-20 x+5$ using the quadratic interpolation method.
6. Using the steepest descent method, Minimize $f(x, y)=x-y+2 x^{2}+2 x y+y^{2}$ starting from the point $\mathrm{x}_{1}=\{00\}$.
7. $\operatorname{Minimize} f(x, y)=1 / 3(x+1)^{3}+y$ subject to $g_{1}(x, y)=1-x \leq 0$ and $g_{2}(x, y)=-y \leq 0$ using exterior penalty function method.
8. a) Explain Bellman's principle of optimality.
b) What are the limitations of Dynamic Programming?

IV B.Tech. II Semester Supplementary Examinations, July/August 2012 OPTIMIZATION TECHNIQUES
(Electrical and Electronics Engineering)

Time: 3 Hours
Max Marks: 80

## Answer any FIVE Questions <br> All Questions carry equal marks <br> *******

1. Explain
a) Design vector
b) Design constraints
c) Constraint surface and
d) Objective function
2. Maximize $z=x^{3}+y^{3}-3 x^{2} y$

Subject to
$\mathrm{x}=10$ and
$\mathrm{y} \leq 10$
3. a) Solve using Simplex method:
$\operatorname{Min} \mathrm{z}=3 \mathrm{x}+\mathrm{y}$
$3 x-2 y \leq 6$
$x+y \geq 2$
$x, y \geq 0$
b) Write the dual of the problem specified in 3(a) and find the solution for the dual using the primal solution.
4. Determine the optimal solution of the following transportation problem:

|  | $\mathrm{D}_{1}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{4}$ | SUPPLY |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{1}$ | 11 | 13 | 17 | 14 | 250 |
| $\mathrm{~S}_{2}$ | 16 | 18 | 14 | 10 | 300 |
| $\mathrm{~S}_{3}$ | 21 | 24 | 13 | 10 | 400 |
| Demand | 200 | 225 | 275 | 250 | 950 |

5. Write an algorithm for quadratic interpolation method and find the minimum of $f(x)=x^{2}+(54 / x)$ using the quadratic interpolation method.
6. Write the algorithm for Cauchy's method and its convergence criteria.
7. Minimize $\left(x^{2}+y-11\right)^{2}+\left(x+y^{2}-7\right)^{2}$ subject to $(x-5)^{2}+y^{2}-26 \geq 0, x, y \geq 0$ using penalty function method.
8. Minimize $\mathrm{Z}=\mathrm{y}_{1}{ }^{2}+2 \mathrm{y}_{2}{ }^{2}+4 \mathrm{y}_{3}$ subject to the constraint $\mathrm{y}_{1}+2 \mathrm{y}_{2}+\mathrm{y}_{3} \leq 8$ and $\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3} \geq 0$ using dynamic programming.
