R07

Set No. 1

IV B.Tech. II Semester Supplementary Examinations, July/August 2012 OPTIMIZATION TECHNIQUES

(Electrical and Electronics Engineering)

Time: 3 Hours

Code No: K0224

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ******* n ion and alysis

- 1. Explain the following:
 - a) Feasible region
 - b) Convex set
 - c) Optimal solution and
 - d) Sensitivity analysis
- 2. a) Min $z = x^2 + y^2$

2x+3y≥10

3x+ 5y≤15

x , $y \ge 0$

b) What are the drawbacks of classical optimization techniques?

3. Solve the following LPP by Simplex method:

Minimize z = 3x + 2ySubject to $x \ge 4$ $x+3y \le 15$ $2x+y \le 10$ and $x, y \ge 0$

- 4. a) Write the LP formulation of a transportation problem.
 - b) Why is Simplex method not used to solve the transportation problems?

1 of 2

www.FirstRanker.com

R07

- 5. Minimize the function $f(x)=x^2+(54/x)$ in the interval [0,5] by the Fibonacci search method. Choose the desired number of function evaluations as 3.
- 6. Minimize $f(x, y) = x-y+2x^2+2xy+y^2$ with the starting point (0,0) using the Univariate method.
- 7. Explain Kuhn-Tucker conditions and their significance in constrained optimization problems.
- 8. Determine the value of u₁, u₂, u₃ so as to Maximize Z = u₁u₂u₃ subject to the constraints: u₁+u₂+u₃ =10 and u₁, u₂, u₃ ≥ 0 using dynamic programming

R07

Set No. 2

IV B.Tech. II Semester Supplementary Examinations, July/August 2012 OPTIMIZATION TECHNIQUES

(Electrical and Electronics Engineering)

Time: 3 Hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ******

- 1. Discuss the typical applications of optimization techniques in electrical and electronics engineering.
- 2. Minimize $f(x, y) = 3x+4y+2x^2+2xy+y^2$ Subject to $2x+3y \le 6$ $4x+3y \ge 12$ $x, y \ge 0$
- 3. a) What are the assumptions involved in Simplex method? Explain.b) What is Duality? Explain its significance.
- 4. A company has three production facilities S₁, S₂, S₃ with production capacity of 7,9 and 18 units (in 100s) per week of a product, respectively. These units are to be shipped to four warehouses D₁, D₂, D₃, D₄ with the requirement of 5, 6, 7 and 14 units (in 100s) per week, respectively. The transportation costs (in rupees) per unit between factories to warehouses are given in the table below:

	D_1	D_2	D ₃	D_4	capacity
S_1	19	30	50	10	7
S_2	70	30	40	60	9
S ₃	40	8	70	20	18
Demand	5	8	7	14	34

Determine the optimal assignment of products in order to reduce the total transportation cost.

R07

- 5. Minimize the function $f(x) = 0.65 \cdot [0.75/(1+x^2)] \cdot 0.65x \tan^{-1}(1/x)$ in the interval [0,3] by the Fibonacci search method. Choose the desired number of function evaluations as 6.
- 6. Explain the basic idea behind Powell's method and consider the minimization of the function $f(x, y) = 6x^2+2y^2-6xy-x-2y$. If $s_1 = \{1 \ 2\}$ denotes the search direction, find a direction s_2 which is conjugate to the direction s1.
- 7. Minimize $f(x, y) = (x-1)^2$ subject to $g_1(x) = 2-x \le 0$ and $g_2(x) = x-4 \le 0$ using interior penalty function method,
- 8. Minimize $Z = y_1^2 + y_2^2 + y_3^2$ subject to the constraint $y_1 + y_2 + y_3 \ge 15$ and $y_1, y_2, y_3 \ge 0$ using dynamic programming.

R07

Set No. 3

IV B.Tech. II Semester Supplementary Examinations, July/August 2012 OPTIMIZATION TECHNIQUES (Electrical and Electronics Engineering)

Time: 3 Hours

Code No: K0224

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ******* raints halysis

- 1. Discuss the following:
 - a) Redundant Constraints
 - b) Post-optimality analysis
 - c) Basic solution and
 - d) Degeneracy
- 2. a) Explain the geometrical interpretation of Lagrange multipliers.
 - b) Max $z = x^2 + y^2$ $10 \le x \ge 20$ and $0 \le y \ge 10$
- 3. Solve following using the Simplex method:

Max z= 3x+4ySubject to $x+3y \ge 15$ $2x+3y \le 30$ $x,y \ge 0$

R07

Set No. 3

4. Determine the optimal solution of the following transportation problem:

	D ₁	D ₂	D ₃	D_4	capacity
S_1	21	16	15	3	11
S ₂	17	18	14	23	13
S ₃	32	27	18	41	19
Demand	6	10	12	15	43

- 5. Write an algorithm for quadratic interpolation method and find the minimum of $f(x) = x^5-5x^3-20x+5$ using the quadratic interpolation method.
- 6. Using the steepest descent method, Minimize $f(x, y) = x-y+2x^2+2xy+y^2$ starting from the point $x_1 = \{0 \ 0\}$.
- 7. Minimize $f(x, y) = 1/3(x+1)^3 + y$ subject to $g_1(x, y) = 1 x \le 0$ and $g_2(x, y) = -y \le 0$ using exterior penalty function method.
- 8. a) Explain Bellman's principle of optimality.b) What are the limitations of Dynamic Programming?

R07

IV B.Tech. II Semester Supplementary Examinations, July/August 2012 OPTIMIZATION TECHNIQUES

(Electrical and Electronics Engineering)

Time: 3 Hours

Code No: K0224

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *******

- 1. Explain
 - a) Design vector
 - b) Design constraints
 - c) Constraint surface and
 - d) Objective function
- 2. Maximize $z = x^3 + y^3 3x^2y$ Subject to x = 10 and $y \le 10$
- 3. a) Solve using Simplex method:

Min z= 3x+y $3x-2y \le 6$ $x+y \ge 2$ $x,y \ge 0$

b) Write the dual of the problem specified in 3(a) and find the solution for the dual using the primal solution.

1 of 2

www.FirstRanker.com

R07

Set No. 4

4. Determine the optimal solution of the following transportation problem:

	D ₁	D_2	D ₃	D_4	SUPPLY
\mathbf{S}_1	11	13	17	14	250
S_2	16	18	14	10	300
S ₃	21	24	13	10	400
Demand	200	225	275	250	950

- 5. Write an algorithm for quadratic interpolation method and find the minimum of $f(x) = x^2 + (54/x)$ using the quadratic interpolation method.
- 6. Write the algorithm for Cauchy's method and its convergence criteria.
- 7. Minimize $(x^2+y-11)^2 + (x+y^2-7)^2$ subject to $(x-5)^2+y^2-26 \ge 0$, x, $y \ge 0$ using penalty function method.
- 8. Minimize $Z = y_1^2 + 2y_2^2 + 4y_3$ subject to the constraint $y_1 + 2y_2 + y_3 \le 8$ and $y_1, y_2, y_3 \ge 0$ using dynamic programming.

2 of 2