IV B.Tech I Semester Regular Examinations, November 2012 POWER SYSTEM ANALYSIS
 (Electrical \& Electronic Engineering)

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. Define and explain the following with suitable examples:
(a) Cut-set and a basic cut-set
(b) Tree and branchs
(c) Basic loop and open loops.
2. Form the $\mathrm{Z}_{\text {bus }}$ for the given network connections and remove the element-2, form the $\mathrm{Z}_{\text {bus }}$ using removal of element formulae (take bus 4 as reference):

	Self		Mutual	
Element	Bus code	Impedance		Impedence
1	$1-2$	0.6	$1-2(1)$	0.2
2	$1-2$	0.4	$1-2$	
3	$1-3$	0.5		
4	$2-4$	0.2	$2-4(4)$	0.1
5	$2-4$	0.4		
6	$3-4$	0.5		

3. The $\mathrm{Y}_{\text {Bus }}$ of a 5 -bus system is (5×5) matrix. The system has an off nominal tap ratio transformer between buses 3 and 5 as shown in figure 3 if the transformer outage takes place, how are the $\mathrm{Y}_{B U S}$ elements are modified.

Figure 3
4. Discuss computational aspects of N-R (Polar form) and N-R (Rectangular form).
5. (a) A $40 \mathrm{MVA}, 20 \mathrm{KV} / 400 \mathrm{KV}$ single phase transformer has the following impedances.
$\mathrm{Z}_{p}=0.9+\mathrm{j} 1.8$ ohms and $\mathrm{Z}_{s}=128+\mathrm{j} 288$ ohms.
Find:
i. pu impedance of the transformer referred to HV
ii. pu impedance of the transformer referred to LV.
(b) Draw pu impedance diagram of the network shown in figure 5 .

Figure 5
6. (a) $\mathrm{P}_{a b c}$ is 3 phase power in a circuit and P_{012} is power in the same circuit in terms of symmetrical components. Show that $a b c={ }_{012}$.
(b) The line currents in a 3 phase supply to an un balanced load are respectively $\mathrm{I}_{a}=10+\mathrm{j} 20 ; \mathrm{I}_{b}=12-\mathrm{j} 10 ; \mathrm{I}_{c}=-3-\mathrm{j} 5$ Amp. phase sequence is abc. Determine the sequence components of currents.
7. A generator supplies 1.0 pu power to an infinite bus as shown in figure 7. The terminal voltage and infinite bus voltage are 1.0 pu. All the reactances are on a common base. Determine steady state stability limit:
[16]
(a) when both lines are in
(b) when one line is switched off.

Figure 7
8. (a) Explain the methods of improving transient stability.
(b) A single machine supplies power to an infinite bus over a double circuit line. Discuss transient stability of the system when one of the circuit is suddenly switched off.
[8+8]

Set No. 2

IV B.Tech I Semester Regular Examinations, November 2012 POWER SYSTEM ANALYSIS
 (Electrical \& Electronic Engineering)

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1. Define and explain the following with suitable examples:
(a) Cut-set and a basic cut-set
(b) Tree and branchs
(c) Basic loop and open loops.
2. Form the $\mathrm{Z}_{\text {bus }}$ for the given network connections (take bus 1 as reference).

Element	Self Buscode 1	Impedance	Buscode	Impedence
2	$1-2$	0.6		
3	$1-2$	0.4	$1-2(1)$	0.2
4	$1-3$	0.5		
5	$2-4$	0.2	$2-4(4)$	0.1
6	$3-4$	0.4		

3. What are the necessities of loud flow studies. Derive the basic loud flow equation. [16]
4. Derive N-R (Polar form) equations and N-R (Rectangular form) equations and explain difference between these methods.
5. (a) Prove that Base impedance $=\frac{K V_{L L(\text { Base })}^{2}}{M V A_{3-\phi(\text { Base })}}$
(b) Obtain pu impedance diagram of the power system of figure 5b. Choose base quantities in generagor circuit.
Generator: $20 \mathrm{MVA}, 11 \mathrm{KV}, X^{\prime \prime}=0.1 \mathrm{pu}$
Transformer: $25 \mathrm{MVA}, 11 / 33 \mathrm{KV}, \mathrm{X}=0.1 \mathrm{pu}$
Load: $10 \mathrm{MVA}, 33 \mathrm{KV}, 0.8 \mathrm{pf}$ lag.

Figure 5b
6. For the system shown in figure 6. A LLG fault occurs at point F. Find fault current.

Figure 6
7. A 275 KV transmission line has following line constants.
$\mathrm{A}=0.85 \angle 5^{0}, \mathrm{~B}=200 \angle 75^{0}$
The line delivers 150 MW with $\left|V_{S}\right|=\left|V_{R}\right|=275 K V$. Determine synchronizing power coefficient.
8. (a) Derive equal area criterion of stability of single machine connected to infinite bus.
(b) Power station A has four identical sets each rated 80 MVA and each having an inertia constant $7 \mathrm{MJ} / \mathrm{MVA}$. The stations are located close together to be regarded as a single equivalent machine for stability studies. Find inertia constant of the equivalent machine on 100 MVA base.

Set No. 3

IV B.Tech I Semester Regular Examinations, November 2012 POWER SYSTEM ANALYSIS
 (Electrical \& Electronic Engineering)

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. Prove $\mathrm{Z}_{b r}=\mathrm{AZ}_{\text {bus }} \mathrm{A}^{t}$ using non-singular transformation.
2. Using the building algorithm construct $Z_{\text {bus }}$ for the system below, choose Bus-4 as reference.

	Self		Mutual	
Element	Bus code	Impedance	Bus code	Impedence
1	$1-2$	0.5		
2	$1-3$	0.4		
3	$1-4$	0.3	$1-3$	0.1
4	$2-3$	0.2		
5	$3-4$	0.3		

3. The $\underline{Y}_{\text {Bus }}$ of a 5 -bus system is (5×5) matrix. The system has an off nominal tap ratio transformer between buses 3 and 5 as shown in figure 3 if the transformer outage takes place, how are the $\mathrm{Y}_{B U S}$ elements are modified.

Figure 3
4. Derive necessary equations for N-R (polar form) method of load flow analysis.[16]
5. (a) A 3 phase fault through fault impedance $\mathrm{Z}_{f}=0.08$ occurs at point F on the system shown in figure 5 . The system is operating at noload and rated voltage. Determine bus voltages and line currents during the fault.
(b) State the assumptions made in short circuit analysis.

$$
[10+6]
$$

Figure 5
6. For the network shown in fig. B a LL fault occurs at Bus 2 through fault impedance of j0.1. Determine fault current.
7. A 50 Hz generator supplies 1.0 pu power to an infinite bus as shown in figure 7 c . Determine:
(a) Steady state stability limit
(b) Accelerating power if load is increased so that $\Delta \delta=10^{0}$
(c) If the accelerating power is constant for 0.05 secs find the rotor angle at the end of this interval. Inertia constant, H for the generator is $4 \mathrm{MJ} / \mathrm{MVA} .[16]$

Figure 7c
8. A 50 Hz generator supplies 0.8 pu power to infinite bus via a network as shown in figure 8. A 3 phase fault occurs at point P . If fault is cleared by simultaneous opening of breakers at both ends of the faulted line at 4.5 cycles after fault occurs. Plot swing curve through $\mathrm{t}=0.2$ secs. Take $\mathrm{H}=4 \mathrm{MJ} / \mathrm{MVA}$.

Figure 8

IV B.Tech I Semester Regular Examinations, November 2012 POWER SYSTEM ANALYSIS
 (Electrical \& Electronic Engineering)

Time: 3 hours
Max Marks:
80
Answer any FIVE Questions
All Questions carry equal marks

1. For the given network shown in figure 1d connections form:
(a) Graph
(b) Tree
(c) Co-tree
(d) Cut-set.

Figure 1d
2. Derive expression for adding a branch to a parallel $\mathrm{Z}_{\text {bus }}$ with mutual coupling.[16]
3. The $\mathrm{Y}_{\text {Bus }}$ of a 5 -bus system is (5×5) matrix. The system has an off nominal tap ratio transformer between buses 3 and 5 as shown in figure 3 if the transformer outage takes place, how are the $\mathrm{Y}_{B U S}$ elements are modified.

Figure 3
4. (a) Compare N-R (Polar) and N-R (Rectangular form) load flow methods.
(b) Explain how voltage controlled buses are handled in N-R(Polar)method.[8+8]
5. (a) Prove that $\mathrm{Z}_{\mathrm{pu}(\text { new })}=\mathrm{Z}_{\mathrm{pu}(\mathrm{old})} \times \frac{(M V A)_{\text {Base(new) }}}{(M V A)_{\text {Base(old })}} \times \frac{\left(K V_{L L}\right)_{\text {Base old }}^{2}}{\left(K V_{L L}^{2}\right)_{\text {Base old }}}$
(b) Obtain pu impedance diagram of the power system of figure 5. Choose base quantities as 15 MVA and 33 KV .

Generator: $30 \mathrm{MVA}, 10.5 \mathrm{KV}, X^{\prime \prime}=1.6$ ohms.
Transformers $\mathrm{T}_{1} \& \mathrm{~T}_{2}$: $15 \mathrm{MVA}, 33 / 11 \mathrm{KV}, \mathrm{X}=15$ ohms referred to HV
Transmission line: 20 ohms / phase
Load: $40 \mathrm{MW}, 6.6 \mathrm{KV}, 0.85$ lagging p.f.

Figure 5
6. For the system shown in figure 6. A a LL fault occurs at point F. Find fault current.

Figure 6
7. A 50 Hz generator supplies 1.0 pu power to an infinite bus as shown in figure 7 c . Determine:
(a) Steady state stability limit
(b) Accelerating power if load is increased so that $\Delta \delta=10^{0}$
(c) If the accelerating power is constant for 0.05 secs find the rotor angle at the end of this interval. Inertia constant, H for the generator is $4 \mathrm{MJ} / \mathrm{MVA}$.[16]

Figure 7c
8. (a) What are the assumptions made in deriving swing equation.
(b) Explain point by point method of determine swing curve.

