R07

SET - 1

II B. Tech II Semester, Supplementary Examinations, April/May – 2013 PRINCIPLES OF PROGRAMMING LANGUAGES

(Computer Science and Engineering)

Time: 3 hours Max. Marks: 80

Answer any **FIVE** Questions
All Questions carry **Equal** Marks

- 1. a) Explain about the factors that influence the language design.
 - b) Explain about the process of compilation.

(8M+8M)

- 2. Define Axiomatic semantics. Explain it in context with Assignment statement, Sequence statements and Selection statements. (16M)
- 3. a) Explain in detail various design issues of Character string types.
 - b) Explain pointers in C and C++ in detail.

(8M+8M)

- 4. Explain in detail the following Control Structures:
 - a) Compound Statements
 - b) Unconditional Statements
 - c) guarded commands

(5M+5M+6M)

- 5. a) Explain various design issues for functions user defined overloaded operators.
 - b) Explain about generic sub programs.

(8M+8M)

- 6. Explain how concurrency control is implemented using semaphores and monitors. Give suitable examples. (16M)
- 7. a) Discuss about basic elements of Prolog.
 - b) Discuss about exception handling in Java.

(8M+8M)

- 8. a) Write a detail note on functions in ML.
 - b) Give comparison of Functional and Imperative Languages.

(8M+8M)

R07

SET - 2

II B. Tech II Semester, Supplementary Examinations, April/May – 2013 PRINCIPLES OF PROGRAMMING LANGUAGES

(Computer Science and Engineering)

Time: 3 hours		Max. Marks: 80
·		

Answer any **FIVE** Questions All Questions carry **Equal** Marks

- 1. Explain in detail the following Programming Paradigms:
 - a) Imperative
 - b) Functional Programming
 - c) Logic Programming

(5M+5M+6M)

2. Define Attribute grammars. Give an Attribute grammar for simple assignment statements. How is the order of evaluation of attributes determined for the trees of your Attribute grammar?

(16M)

- 3. Explain in detail the following data types:
 - a) array b) associative c) record d) union
- e) pointer

(16M)

- a) Distinguish between language generators and language recognizers.
 - b) Give grammar for simple assignment statements.
 - c) Give an unambiguous grammar for if-then-else.

(6M+5M+5M)

- a) Explain about different semantics models of parameter passing and implementation models of parameter passing.
 - b) Illustrate co-routines with example.

(8M+8M)

- a) What are the language design requirements for a language that supports abstract data types?
 - b) Explain in detail about monitors.

(8M + 8M)

- 7. a) Explain the basic elements of prolog and list applications of logic programming.
 - b) Explain in detail about Logic Programming.

(8M+8M)

- 8. a) Explain the main features of Imperative Languages.
 - b) Write a LISP function Fib (n) that computes n Fibonacci number.

(8M+8M)

R07

SET - 3

II B. Tech II Semester, Supplementary Examinations, April/May – 2013 PRINCIPLES OF PROGRAMMING LANGUAGES

	PRINCIPLES OF PROGRAMMING LANGUAGES	
Tin	(Computer Science and Engineering) ne: 3 hours Ma	x. Marks: 80
	Answer any FIVE Questions	
	All Questions carry Equal Marks	
1.	a) Distinguish between Compilation and Interpretation.	
	b) Explain in detail about Programming domains and Language categories.	(8M+8M)
2.	a) Give BNF and EBNF versions of an expression grammar.	
	b) Explain about attribute grammars in detail.	(8M+8M)
3.	a) What is type checking? Discuss the various types of type checking.	
	b) Explain about type compatibility.	(8M+8M)
4.	a) Explain in detail Arithmetic relational and Boolean expressions	
	b) Explain in detail Assignment Statements.	(8M+8M)
5.	a) What are the three semantic models of parameter passing?	
	b) Define shallow and deep binding for referencing environments of subprogram	
	been passed as parameters.	(8M+8M)
6.	a) Explain in detail about Java threads and C# threads.	
	b) Explain in detail about semaphores.	(8M+8M)
7.	a) Explain basic concepts and design issues of Exception handling.	
	b) Discuss how Exception handlers are helpful in C++ Exception handling.	(8M+8M)
8.	a) Explain about LISP.	
	b) Discuss about basic elements of Prolog.	(8M+8M)

R07

SET - 4

II B. Tech II Semester, Supplementary Examinations, April/May – 2013 PRINCIPLES OF PROGRAMMING LANGUAGES

(Computer Science and Engineering)

Time: 3 hours Max. Marks: 80

Answer any **FIVE** Questions
All Questions carry **Equal** Marks

- 1. Explain in detail the following Programming Language Implementation:
 - a) Compilation
 - b) Virtual Machines
 - c) Programming environments

(5M+5M+6M)

- 2. a) How do you express the associativity of operators in grammar? Explain with an example.
 - b) Describe the basic concepts of Denotational semantics.

(8M+8M)

- 3. a) Define Lifetime, Scope, and static Scope & Dynamic Scope. What are the general problems with static Scoping?
 - b) Discuss on implementation of pointer & reference types.

(8M+8M)

- 4. a) Explain in detail Relational expressions, Boolean expressions and Short circuit Evaluation.
 - b) What are guarded commands? Explain.

(8M+8M)

- 5. a) Explain co-routines in detail.
 - b) What are the generic characteristics of sub program?

(11M+5M)

- 6. a) Explain parameterized Abstract Data Types.
 - b) Explain how message passing is implemented in Ada.

(8M+8M)

- 7. a) Explain the basic concepts of exception handling? What are the design issues for exception handling systems?
 - b) Why were imperative features added to most dialects of LISP?

(8M+8M)

- 8. a) Explain DEFINE function in detail with suitable example.
 - b) What are the features of ML. Explain?

(8M+8M)