Code: R7210402

Max. Marks: 80

B.Tech II Year I Semester (R07) Supplementary Examinations, May 2013 **PROBABILITY THEORY & STOCHASTIC PROCESSES** (Common to ECE & ECC)

Time: 3 hours

Answer any FIVE questions All questions carry equal marks

- 1 (a) State and prove Baye's theorem of probability.
 - (b) A₁, A₂, A₃ are three mutually exclusive and exhaustive sets of events associated with a random experiment E₁. Events B₁, B₂, B₃ are mutually exclusive and exhaustive sets of events associated with random experiment E₂. The joint probabilities of occurrence of these events are listed in table given below.

0				
	B ₁	B ₂	B ₃	
A ₁	³ / ₃₆	*	⁵ / ₃₆	
A ₂	⁵ / ₃₆	⁴ / ₃₆	⁵ / ₃₆	N
A ₃	*	⁶ / ₃₆	*	
P(B _j)	¹² / ₃₆	¹⁴ / ₃₆	*	

(i) Find the missing probabilities (*) in the table.

- (ii) Find P (B_3/A_1) and P (A_1/B_3) .
- (iii) Are events A₁ and B₁ statistically independent?
- 2 (a) Consider the probability density $f_X(x) = ae^{-b|x|}$ where x is a random variable whose values range from $x = -\infty$ to ∞ . Find
 - (i) The CDF $F_X(x)$. (ii) The relationship between a and b.
 - (iii) The probability that the outcome x lies between 1 and 2.
 - (b) The probability of a defective pen from a pen manufacturing unit is 3%. In a box of 400 pens, find the probability that;
 (i) Exactly 3 pens are defective. (ii) More than 2 pens are defective.
- 3 (a) State and prove properties of moment generating function of a random variable X.
 - (b) A random variable X has a characteristic function given by $\phi_X(\omega) = \begin{cases} 1 |\omega|, & |\omega| \le 1 \\ 0, & |\omega| > 1 \end{cases}$ Find density function.
- 4 (a) The joint pdf of two random variables X and Y is $f_{X,Y}(x, y) = K(6 x y)$ for 0 < x < 2, 2 < y < 4= 0 else where

Find (i) The value of K. (ii) P (X + Y < 3).
(b) If
$$f_{X,Y}(x,y) = xy \exp\left(-\left(\frac{x^2+y^2}{2}\right)\right) for x > 0, y > 0$$

= 0 other wise

(i) Are X and Y statistically independent. (ii) Find $P(X \le 1, Y \le 1)$.

Contd. in page 2

Page 1 of 2

www.FirstRanker.com

Code: R7210402

- 5 (a) Show that the variance of weighted sum of uncorrelated random variables equals the weighted sum of the variances of the random variables.
 - (b) Two Gaussian random variables X_1 and X_2 have zero means and variances $\sigma_{X_1}^2 = 4$ and $\sigma_{X_2}^2 = 9$. Their covariance $C_{X_1X_2} = 3$. If X_1 and X_2 are linearly transformed to new variables Y_1 and Y_2 according to $Y_1 = X_1 - 2X_2$ and $Y_2 = 3X_1 + 4X_2$. Find means, variances and covariance of Y_1 and Y_2 .
- 6 (a) A random process is defined as $X(t) = A \sin(\omega t + \theta)$ where A is a constant and θ is a random variable uniformly distributed over $(-\pi, \pi)$. Check X(t) for stationarity.
 - (b) If a random process $X(t) = \sin(\omega t + y)$ where Y is a random variable uniformly distributed in the interval $(0, 2\pi)$. Prove that $cov(t_1, t_2) = auto correction(t_1, t_2) = \frac{cos\omega(t_1-t_2)}{2}$.
- 7 (a) Prove the following:
 - (i) $R_e[s_{XY}(\omega)]$ is an even function of ω and $I_m[s_{XY}(\omega)]$ is an odd function of ω .
 - (ii) If X(t) and Y(t) are uncorrelated and have constant means E[X] and E[Y] prove that $s_{XY}(\omega) = s_{YX}(\omega) = 2\pi E[X] E[Y] \delta(\omega)$.
 - (b) Find the auto correlation function of a process whose PSD is:

$$s_{XX}(\omega) = \frac{157+12\omega^2}{(16+\omega^2)(9+\omega^2)}$$

- 8 (a) What are the precautions to be taken in cascading stages of a network from the point of view of noise reduction?
 - (b) What is the need for band limiting the signal towards the direction of increasing SVR?