Code: R7210402

B.Tech II Year I Semester (R07) Supplementary Examinations, May 2013 PROBABILITY THEORY \& STOCHASTIC PROCESSES

(Common to ECE \& ECC)
Time: 3 hours
Max. Marks: 80
Answer any FIVE questions
All questions carry equal marks

1 (a) State and prove Baye's theorem of probability.
(b) A_{1}, A_{2}, A_{3} are three mutually exclusive and exhaustive sets of events associated with a random experiment E_{1}. Events B_{1}, B_{2}, B_{3} are mutually exclusive and exhaustive sets of events associated with random experiment E_{2}. The joint probabilities of occurrence of these events are listed in table given below.

	B_{1}	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$
$\mathrm{~A}_{1}$	$3 / 36$	$*$	$5 / 36$
$\mathrm{~A}_{2}$	$5 / 36$	$4 / 36$	$5 / 36$
$\mathrm{~A}_{3}$	$*$	$6 / 36$	$*$
$\mathrm{P}\left(\mathrm{B}_{\mathrm{j}}\right)$	$12 / 36$	$14 / 36$	$*$

(i) Find the missing probabilities $(*)$ in the table.
(ii) Find $\mathrm{P}\left(\mathrm{B}_{3} / \mathrm{A}_{1}\right)$ and $\mathrm{P}\left(\mathrm{A}_{1} / \mathrm{B}_{3}\right)$.
(iii) Are events A_{1} and B_{1} statistically independent?

2 (a) Consider the probability density $f_{X}(x)=a e^{-b|x|}$ where x is a random variable whose values range from $x=-\infty$ to ∞. Find
(i) The $\operatorname{CDF} F_{X}(x)$.
(ii) The relationship between a and b.
(iii) The probability that the outcome x lies between 1 and 2 .
(b) The probability of a defective pen from a pen manufacturing unit is 3%. In a box of 400 pens, find the probability that;
(i) Exactly 3 pens are defective. (ii) More than 2 pens are defective.

3 (a) State and prove properties of moment generating function of a random variable X .
(b) A random variable X has a characteristic function given by $\emptyset_{X}(\omega)=\left\{\begin{array}{cc}1-|\omega| & ,|\omega| \leq 1 \\ 0 & ,|\omega|>1\end{array}\right.$ Find density function.

4 (a) The joint pdf of two random variables X and Y is $f_{X, Y}(x, y)=\mathrm{K}(6-x-y)$ for $0<x<2,2<\mathrm{y}<4$ $=0$ else where
Find (i) The value of K . (ii) $\mathrm{P}(\mathrm{X}+\mathrm{Y}<3)$.
(b)

If $f_{X, Y}(x, y)=x y \exp \left(-\left(\frac{x^{2}+y^{2}}{2}\right)\right)$ for $x>0, y>0$
$=0 \quad$ other wise
(i) Are X and Y statistically independent. (ii) Find $P(X \leq 1, Y \leq 1)$.

Code: R7210402

5 (a) Show that the variance of weighted sum of uncorrelated random variables equals the weighted sum of the variances of the random variables.
(b) Two Gaussian random variables X_{1} and X_{2} have zero means and variances $\sigma_{X_{1}}{ }^{2}=4$ and ${\sigma_{X_{2}}}^{2}=9$. Their covariance $C_{X_{1} X_{2}}=3$. If X_{1} and X_{2} are linearly transformed to new variables Y_{1} and Y_{2} according to $Y_{1}=X_{1}-2 X_{2}$ and $Y_{2}=3 X_{1}+4 X_{2}$. Find means, variances and covariance of Y_{1} and Y_{2}.

6 (a) A random process is defined as $X(t)=A \sin (\omega t+\theta)$ where A is a constant and θ is a random variable uniformly distributed over $(-\pi, \pi)$. Check $X(t)$ for stationarity.
(b) If a random process $X(t)=\sin (\omega t+y)$ where Y is a random variable uniformly distributed in the interval $(0,2 \pi)$. Prove that $\operatorname{cov}\left(t_{1}, t_{2}\right)=$ auto correction $\left(t_{1}, t_{2}\right)=\frac{\cos \omega\left(t_{1}-t_{2}\right)}{2}$.

7 (a) Prove the following:
(i) $R_{e}\left[s_{X Y}(\omega)\right]$ is an even function of ω and $I_{m}\left[s_{X Y}(\omega)\right]$ is an odd function of ω.
(ii) If $\mathrm{X}(\mathrm{t})$ and $\mathrm{Y}(\mathrm{t})$ are uncorrelated and have constant means $E[X]$ and $E[Y]$ prove that $s_{X Y}(\omega)=s_{Y X}(\omega)=2 \pi E[X] E[Y] \delta(\omega)$.
(b) Find the auto correlation function of a process whose PSD is:

$$
s_{X X}(\omega)=\frac{157+12 \omega^{2}}{\left(16+\omega^{2}\right)\left(9+\omega^{2}\right)} .
$$

8 (a) What are the precautions to be taken in cascading stages of a network from the point of view of noise reduction?
(b) What is the need for band limiting the signal towards the direction of increasing SVR?

