Code.No: R05012305

I B.TECH – EXAMINATIONS, JUNE - 2011 PROCESS ENGINEERING PRINCIPLES (BIOTECHNOLOGY)

Time: 3hours

b)

Max.Marks:80

Answer any FIVE questions All questions carry equal marks - - -

1.a) Distinguish between the unit operations: Extraction and leaching.

What is the role of Engineer in bio process?

[8+8]

[16]

- 2.a) What is the gravitational force constant $[g_c]$ explain its significance with the F.P.S units and dimensions?
 - b) Define dyne and gram weight. How are they related? What are the dimensions and units of this conversion factor? [8+8]
- 3. Water is to be pumped from a storage tank through 7.5 cm dia pipe of 200 m long to an over head tank situated at a height of 20 m from the level of the pump using the additional data find the power required.
 - Data: Mass flow rate = 8.0 kg/secFrictional losses are = 0.15 J/kg per meter of pipe Pump efficiency = 60%.
- 4.a) Define absolute, reduced and apparent viscosity terms. State the units in CGS and SI systems.
- Briefly write on the viscosity of a fermentation broth suspension. b) [5+3+8]
- Write on capillary viscometer for determining the viscosity. c)
- 5.a) What is Mach number, subsonic and supersonic? Derive equation for Mach number of an ideal gas in terms of its acoustic velocity. b) [8+8]

6.	Derive Erguns equation for a fluid flowing through a packed bed.	[16]
7.	Write short note on:	
	a) Pitot tube	
	b) Variable area meter.	[8+8]

- 8.a) Discuss in detail the construction and working of a centrifugal pump. b) Explain the performance curve of a centrifugal pump. [8+8]

Time: 3hours

I B.TECH – EXAMINATIONS, JUNE - 2011 PROCESS ENGINEERING PRINCIPLES (BIOTECHNOLOGY)

Max.Marks:80

Answer any FIVE questions All questions carry equal marks

- - -

1.	Water is to be pumped from a storage tank through 7.5 cm dia pipe of 200 m lot to an over head tank situated at a height of 20 m from the level of the pump using the additional data find the power required. Data: Mass flow rate = 8.0 kg/sec	
	Frictional losses are = 0.15 J/kg per meter of pipe Pump efficiency = 60% .	[16]
2.a)	Define absolute, reduced and apparent viscosity terms. State the units in CGS and SI systems.	
b)	Briefly write on the viscosity of a fermentation broth suspension.	
c)	Write on capillary viscometer for determining the viscosity.	[5+3+8]
3.a)	What is Mach number, subsonic and supersonic?	
b)	Derive equation for Mach number of an ideal gas in terms of its acousti	c velocity. [8+8]
4.	Derive Erguns equation for a fluid flowing through a packed bed.	[16]
5.	Write short note on:	
	a) Pitot tube	
	b) Variable area meter.	[8+8]
6.a)	Discuss in detail the construction and working of a centrifugal pump.	
b)	Explain the performance curve of a centrifugal pump.	[8+8]
7.a)	Distinguish between the unit operations: Extraction and leaching.	
b)	What is the role of Engineer in bio process?	[8+8]
8.a)	What is the gravitational force constant $[g_c]$ explain its significance with the F.P.S units and dimensions?	
b)	Define dyne and gram weight. How are they related? What are the	dimensions
,	and units of this conversion factor?	[8+8]

Code.No: R05012305

I B.TECH – EXAMINATIONS, JUNE - 2011 PROCESS ENGINEERING PRINCIPLES (BIOTECHNOLOGY)

Time: 3hours

Max.Marks:80

Answer any FIVE questions All questions carry equal marks

- - -

1 a)	What is Mach number, subscapia and superscapia?	
1.a) b)	Derive equation for Mach number of an ideal gas in terms of its acoustic	velocity.
0)		[8+8]
2.	Derive Erguns equation for a fluid flowing through a packed bed.	[16]
3.	Write short note on:	
	a) Pitot tubeb) Variable area meter.	[8+8]
4.a)	Discuss in detail the construction and working of a centrifugal pump.	
b)	Explain the performance curve of a centrifugal pump.	[8+8]
5.a)	Distinguish between the unit operations: Extraction and leaching.	2
b)	What is the role of Engineer in bio process?	[8+8]
6.a)	What is the gravitational force constant $[g_c]$ explain its significance with units and dimensions?	the F.P.S
b)	Define dyne and gram weight. How are they related? What are the di	imensions
0)	and units of this conversion factor?	[8+8]
7.	Water is to be pumped from a storage tank through 7.5 cm dia pipe of 20	00 m long
	to an over head tank situated at a height of 20 m from the level of the put the additional data find the power required.	Imp using
	Data: Mass flow rate = 8.0 kg/sec	
	Frictional losses are = 0.15 J/kg per meter of pipe	
	Pump efficiency = 60% .	[16]
8.a)	Define absolute, reduced and apparent viscosity terms. State the units in	CGS and

- SI systems.b) Briefly write on the viscosity of a fermentation broth suspension.
- c) Write on capillary viscometer for determining the viscosity. [5+3+8]

Code.No: R05012305

I B.TECH – EXAMINATIONS, JUNE - 2011 PROCESS ENGINEERING PRINCIPLES (BIOTECHNOLOGY)

Time: 3hours

Max.Marks:80

Answer any FIVE questions All questions carry equal marks

- - -

1.	Write short note on:	
	a) Pitot tube	
	b) Variable area meter. [8+	8]
2.a) b)	Discuss in detail the construction and working of a centrifugal pump. Explain the performance curve of a centrifugal pump. [8+	81
,		1
3.a)	Distinguish between the unit operations: Extraction and leaching.	
b)	What is the role of Engineer in bio process? [8+	8]
4.a)	What is the gravitational force constant [g _c] explain its significance with the F.P. units and dimensions?	
b)	Define dyne and gram weight. How are they related? What are the dimensio	ns
,	and units of this conversion factor? [8+	8]
5.	Water is to be pumped from a storage tank through 7.5 cm dia pipe of 200 m lo	ng
	to an over head tank situated at a height of 20 m from the level of the pump usin	ng
	the additional data find the power required.	-
	Data: Mass flow rate = 8.0 kg/sec	
	Frictional losses are = 0.15 J/kg per meter of pipe	
	Pump efficiency = 60% . [10]	6]
6.a)) Define absolute, reduced and apparent viscosity terms. State the units in CGS	
/	SI systems.	
b)	Briefly write on the viscosity of a fermentation broth suspension.	
c)	Write on capillary viscometer for determining the viscosity. $[5+3+8]$	8]
7.a)	What is Mach number, subsonic and supersonic?	
b)	Derive equation for Mach number of an ideal gas in terms of its acoustic velocity	v.
,	[8+	8]
8.	Derive Erguns equation for a fluid flowing through a packed bed. [1]	6]