I B.Tech Examinations,May 2011
 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING Bio-Technology

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. A Hartley oscillator is designed with $L_{1}=2 \mathrm{mH}, L_{2}=20 \mu \mathrm{H}$ and a variable capacitance. Determine the range of capacitance values is the frequency of oscillation is varied from 2050 KHz to 3050 KHz .
2. Draw the circuit diagram of single tuned class A power amplifier using NPN transistors and explain clearly its operation.
3. Explain how UJT works as a relaxation oscillator.
4. (a) Simplify the function using Karnaugh map:

$$
\begin{aligned}
& \mathrm{f}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma(0,2,6,10,11,12) \\
& \mathrm{f}(\text { Don't Care })=\Sigma(3,5,7,8) .
\end{aligned}
$$

(b) Realize the following function using EX.OR and EX-NOR gates:
$f(A, B, C, D)=A B C+A B C+A C D+A C D$.
5. Obtain the relationship between currents and the relationship between voltages in a delta connected system. Hence derive the equation for power in such a system.
6. With the help of a neat sketch explain the construction and operation of attraction type moving iron instrument.
7. Describe the constructional features of a dc machine with neat sketch.
8. Explain the construction and working of an SCR with relavant graphs.

I B.Tech Examinations,May 2011
 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING Bio-Technology

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. A Hartley oscillator is designed with $L_{1}=2 \mathrm{mH}, L_{2}=20 \mu \mathrm{H}$ and a variable capacitance. Determine the range of capacitance values is the frequency of oscillation is varied from 2050 KHz to 3050 KHz .
2. (a) Simplify the function using Karnaugh map:

$$
\begin{aligned}
& \mathrm{f}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma(0,2,6,10,11,12) \\
& \mathrm{f}(\text { Don't Care })=\Sigma(3,5,7,8) .
\end{aligned}
$$

(b) Realize the following function using EX-OR and EX-NOR gates: $\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{ABC}+\mathrm{ABC}+\mathrm{ACD}+\mathrm{ACD}$.
3. Describe the constructional features of a dc machine with neat sketch.
4. Explain how UJT works as a relaxation oscillator.
5. With the help of a neat sketeh explain the construction and operation of attraction type moving iron instrument.
6. Draw the circuit diagram of single tuned class A power amplifier using NPN transistors and explain clearly its operation.
7. Obtain the relationship between currents and the relationship between voltages in a delta connected system. Hence derive the equation for power in such a system.
8. Explain the construction and working of an SCR with relavant graphs.

I B.Tech Examinations,May 2011
 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING Bio-Technology

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. Explain the construction and working of an SCR with relavant graphs.
2. Obtain the relationship between currents and the relationship between voltages in a delta connected system. Hence derive the equation for power in such a system.
3. A Hartley oscillator is designed with $L_{1}=2 \mathrm{mH}, L_{2}=20 \mu \mathrm{H}$ and a vapiable capacitance. Determine the range of capacitance values is the frequency of oscillation is varied from 2050 KHz to 3050 KHz .
4. Describe the constructional features of a dc machine with neat sketch.
5. Explain how UJT works as a relaxation oscillator.
6. With the help of a neat sketch explain the construction and operation of attraction type moving iron instrument.
7. Draw the circuit diagram of single tuned class A power amplifier using NPN transistors and explain elearly its operation.
8. (a) Simplify the function using Karnaugh map:
$\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(0,2,6,10,11,12)$
$\mathrm{f}($ Don't Care $)=\Sigma(3,5,7,8)$.
(b) Realize the following function using EX-OR and EX-NOR gates:
$f(A, B, C, D)=A B C+A B C+A C D+A C D$.

I B.Tech Examinations,May 2011
 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING Bio-Technology

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Simplify the function using Karnaugh map:
$\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(0,2,6,10,11,12)$
$\mathrm{f}($ Don't Care $)=\Sigma(3,5,7,8)$.
(b) Realize the following function using EX-OR and EX-NOR gates: $f(A, B, C, D)=A B C+A B C+A C D+A C D$.
2. Obtain the relationship between currents and the relationship betwreen voltages in a delta connected system. Hence derive the equation for powerin such a system.
3. Explain how UJT works as a relaxation oscillaton.
4. Draw the circuit diagram of single tuned class A power amplifier using NPN transistors and explain clearly its operation.
5. With the help of a neat sketch explain the construction and operation of attraction type moving iron instrument.
6. A Hartley oscillator is designed with $L_{1}=2 \mathrm{mH}, L_{2}=20 \mu \mathrm{H}$ and a variable capacitance. Determine the range of capacitance values is the frequency of oscillation is varied from 2050 KHz to 3050 KHz .
7. Describe the constructional features of a dc machine with neat sketch.
8. Explain the construction and working of an SCR with relavant graphs.
