Code No: R07A1BS02

R07

Set No. 2

I B.Tech Examinations, June 2011 MATHEMATICS - I

Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, BT, AME, ICE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE Time: 3 hours Max Marks: 80

> Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Examine the convergence of $\sum 3^{n+1}/(n+1) 2^n$
 - (b) Examine the convergence or divergence of $\sum n^2 x^{n+1}$, (x>0) [6+10]
- 2. (a) Find the centre of curvature of $x^3 = a^2 y$ at (a, a).
 - (b) Find the evolute of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, considering it as the envelope of normals. [8+8]
- 3. Verify Green's theorem in the xy-plane for $\int_C (x^2 y^2) dx + 2xy dy$ where C is the closed curve of the region bounded $y = x^2$ and $y^2 = x$. [16]

4. (a) Solve
$$(x^2 - y^2) dx = 2xy dy$$
.

- (b) If a population is increasing exponentially at the rate of 2 percent per year, what will be the percentage increase over a period of 10 years? [8+8]
- 5. (a) Solve $(D^2+2D+2) y = e^{-x} + \sin 2x$ (b) Solve the equation $(D^2 - 2D + 2)y = e^x \tan x.$ [8+8]
- 6. (a) Verify Lagrange's Mean Value Theorem for $f(x) = 2x^2 7x + 10$ in [0, 5].
 - (b) Find the Jacobian of x, y with respect to θ , ϕ given that $x = \sin \theta \sqrt{1 a^2 \sin^2 \phi}$, $y = \cos \theta \cos \phi$. [8+8]
- 7. (a) Find L [f(t)] where f(t) is given by f(t) = t, 0 < t < b = 2b-t, b < t < 2b, 2b being the period of f(t).
 - (b) Find L^{-1} [(2s +3)/ (s³ 6s² + 11s 6)] [8+8]
- 8. Evaluate $\iint \frac{dxdydz}{\sqrt{a^2-x^2-y^2-z^2}}$ where the integral is taken over the region of space bounded by the coordinate planes and sphere $x^2 + y^2 + z^2 = a^2$ and contained in the first octant. [16]

 $\mathbf{R07}$

Set No. 4

[8+8]

I B.Tech Examinations, June 2011 MATHEMATICS - I

Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, BT, AME, ICE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Solve $(D^2+2D+2) = e^{-x} + \sin 2x$
 - (b) Solve the equation $(D^2 2D + 2)y = e^x \tan x$.
- 2. (a) Examine the convergence of $\sum 3^{n+1}/(n+1) 2^n$
 - (b) Examine the convergence or divergence of $\sum n^2 x^{n+1}$, (x>0) [6+10]
- 3. (a) Solve $(x^2 y^2) dx = 2xy dy$.

Code No: R07A1BS02

- (b) If a population is increasing exponentially at the rate of 2 percent per year, what will be the percentage increase over a period of 10 years? [8+8]
- 4. Verify Green's theorem in the xy-plane for $\int_C (x^2 y^2) dx + 2xy dy$ where C is the closed curve of the region bounded $y = x^2$ and $y^2 = x$. [16]
- 5. (a) Find the centre of curvature of $x^3 = a^2 y$ at (a, a).
 - (b) Find the evolute of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, considering it as the envelope of normals. [8+8]
- 6. (a) Verify Lagrange's Mean Value Theorem for $f(x) = 2x^2 7x + 10$ in [0, 5].
 - (b) Find the Jacobian of x, y with respect to θ , ϕ given that $x = \sin \theta \sqrt{1 a^2 \sin^2 \phi}$, $y = \cos \theta \cos \phi$. [8+8]
- 7. Evaluate $\int \int \int \frac{dxdydz}{\sqrt{a^2 x^2 y^2 z^2}}$ where the integral is taken over the region of space bounded by the coordinate planes and sphere $x^2 + y^2 + z^2 = a^2$ and contained in the first octant. [16]
- 8. (a) Find L [f (t)] where f (t) is given by f (t) = t, 0 < t < b = 2b-t, b < t < 2b, 2b being the period of f (t).

(b) Find L⁻¹ [(2s +3)/ (s³ - 6s² + 11s - 6)] [8+8]

 $\mathbf{R07}$

Set No. 1

[8+8]

I B.Tech Examinations, June 2011 MATHEMATICS - I

Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, BT, AME, ICE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE Time: 3 hours Max Marks: 80

> Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Solve $(D^2+2D+2) = e^{-x} + \sin 2x$
 - (b) Solve the equation $(D^2 2D + 2)y = e^x \tan x$.
- 2. (a) Solve $(x^2 y^2) dx = 2xy dy$.

Code No: R07A1BS02

- (b) If a population is increasing exponentially at the rate of 2 percent per year, what will be the percentage increase over a period of 10 years? [8+8]
- 3. (a) Find L [f(t)] where f(t) is given by f(t) = t, 0 < t < b = 2b-t, b < t < 2b, 2b being the period of f(t).
 (b) Find L⁻¹ [(2s +3)/(s³ - 6s² + 11s - 6)] [8+8]
- 4. (a) Verify Lagrange's Mean Value Theorem for $f(x) = 2x^2 7x + 10$ in [0, 5].
 - (b) Find the Jacobian of x, y with respect to θ , ϕ given that $x = \sin \theta \sqrt{1 a^2 \sin^2 \phi}$, $y = \cos \theta \cos \phi$. [8+8]
- 5. (a) Examine the convergence of $\sum 3^{n+1}/(n+1) 2^n$
 - (b) Examine the convergence or divergence of $\sum n^2 x^{n+1}$, (x>0) [6+10]
- 6. Verify Green's theorem in the xy-plane for $\int_C (x^2 y^2) dx + 2xy dy$ where C is the closed curve of the region bounded $y = x^2$ and $y^2 = x$. [16]
- 7. (a) Find the centre of curvature of $x^3 = a^2 y$ at (a, a).
 - (b) Find the evolute of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, considering it as the envelope of normals. [8+8]
- 8. Evaluate $\iint \frac{dxdydz}{\sqrt{a^2-x^2-y^2-z^2}}$ where the integral is taken over the region of space bounded by the coordinate planes and sphere $x^2 + y^2 + z^2 = a^2$ and contained in the first octant. [16]

R07

Set No. 3

I B.Tech Examinations, June 2011 MATHEMATICS - I

Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, BT, AME, ICE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE Time: 3 hours Max Marks: 80

> Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Examine the convergence of $\sum 3^{n+1}/(n+1) 2^n$
 - (b) Examine the convergence or divergence of $\sum n^2 x^{n+1}$, (x>0) [6+10]
- 2. Evaluate $\iiint \frac{dxdydz}{\sqrt{a^2-x^2-y^2-z^2}}$ where the integral is taken over the region of space bounded by the coordinate planes and sphere $x^2 + y^2 + z^2 = a^2$ and contained in the first octant. [16]
- 3. (a) Solve $(x^2 y^2) dx = 2xy dy$.

Code No: R07A1BS02

- (b) If a population is increasing exponentially at the rate of 2 percent per year, what will be the percentage increase over a period of 10 years? [8+8]
- 4. Verify Green's theorem in the xy-plane for $\int_{C} (x^2 y^2) dx + 2xy dy$ where C is the closed curve of the region bounded $y = x^2$ and $y^2 = x$. [16]
- 5. (a) Find the centre of curvature of $x^3 = a^2 y$ at (a, a).
 - (b) Find the evolute of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, considering it as the envelope of normals. [8+8]
- 6. (a) Solve $(D^2+2D+2) = e^{-x} + \sin 2x$
 - (b) Solve the equation $(D^2 2D + 2)y = e^x \tan x.$ [8+8]
- 7. (a) Find L [f (t)] where f (t) is given by f (t) = t, 0 < t < b = 2b-t, b < t < 2b, 2b being the period of f (t).
 - (b) Find $L^{-1} [(2s+3)/(s^3-6s^2+11s-6)]$ [8+8]
- 8. (a) Verify Lagrange's Mean Value Theorem for $f(x) = 2x^2 7x + 10$ in [0, 5].
 - (b) Find the Jacobian of x, y with respect to θ , ϕ given that $x = \sin \theta \sqrt{1 a^2 \sin^2 \phi}$, $y = \cos \theta \cos \phi$. [8+8]
