I B.Tech Examinations,June 2011
 MATHEMATICAL METHODS

Common to ME, BME, IT, MECT, MEP, AME, ICE, E.COMP.E, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. Express the following quadratic form as 'sum of squares' by congruent transformation and write down the corresponding linear transformation $Q=10 x^{2}+y^{2}+z^{2}-6 x y-$ $2 y z+x z$.
2. (a) Find the rank of $\left(\begin{array}{ccccc}3 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 7 & 8 & 9 \\ 15 & 16 & 17 & 18 & 19\end{array}\right)$
(b) Find all the solutions of the following systems of linear homogeneous equations $x+y+z=0,2 x+5 y+7 z=0,2 x-5 y+3 z=0$.
3. (a) If $f(x)=\left\{\begin{array}{l}k x ; 0<x<\frac{\pi}{2} \\ k(\pi-x) ; \frac{\pi}{2}<x<\pi\end{array}\right.$

Find the half-range sine series.
(b) Find the Fourier expansion of $\mathrm{f}(\mathrm{x})=\mathrm{x} \cos \mathrm{x} ; 0<\mathrm{x}<2 \pi$.
4. (a) Solve z=px+qy $+p^{2} q^{2}$
(b) Using Convolution theorem, find the inverse-Z transform of $\frac{1}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-\frac{1}{4} z^{-1}\right)}$.
5. Determine the characteristic roots and the corresponding characteristic vectors of the matrix $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$
6. (a) The table given below reveals the velocity v of a body during the specified time t. Find the acceleration at $\mathrm{t}=1.1$.

$$
\begin{array}{cccccc}
\text { t: } & 1.0 & 1.1 & 1.2 & 1.3 & 1.4 \\
\text { v: } & 43.1 & 47.7 & 52.1 & 56.4 & 60.8
\end{array}
$$

(b) Evaluate $\int_{0}^{1} \frac{d x}{1+x}$ by
i. Trapezoidal rule
ii. Simpson's one-third rule.
7. Find the value of $y(0.1)$ and $y(0.2)$ from $\frac{d^{2} y}{d x^{2}}-x \cdot\left(\frac{d y}{d x}\right)^{2}+y^{2}=0 ; y(0)=1, y^{\prime}(0)=0$ by using Taylor's series correct to 4 decimal places.
8. (a) Solve the following by iteration method: $\mathrm{x}^{3}+\mathrm{x}^{2}=100$
(b) Solve for a positive root by False position method: $\mathrm{e}^{-x}=\sin \mathrm{x}$.

I B.Tech Examinations,June 2011
 MATHEMATICAL METHODS

Common to ME, BME, IT, MECT, MEP, AME, ICE, E.COMP.E, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Solve $\mathrm{z}=\mathrm{px}+\mathrm{qy}+\mathrm{p}^{2} q^{2}$
(b) Using Convolution theorem, find the inverse-Z transform of $\frac{1}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-\frac{1}{4} z^{-1}\right)}$.
2. (a) Solve the following by iteration method: $\mathrm{x}^{3}+\mathrm{x}^{2}=100$
(b) Solve for a positive root by False position method: $\mathrm{a}^{-x}=\sin \mathrm{x} . \quad[8+8]$
3. Determine the characteristic roots and the corresponding characteristic vectors of the matrix $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$
4. Find the value of $y(0.1)$ and $y(0.2)$ from $\frac{d^{2} y}{d x^{2}}-x \cdot\left(\frac{d y}{d x}\right)^{2}+y^{2}=0 ; y(0)=1, y^{\prime}(0)=0$ by using Taylor's series correct to 4 decimal places.
5. (a)

Find the half-range sine series.
(b) Find the Fourier expansion of $\mathrm{f}(\mathrm{x})=\mathrm{x} \cos \mathrm{x} ; 0<\mathrm{x}<2 \pi$.
6. (a) Find the rank of $\left(\begin{array}{ccccc}3 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 7 & 8 & 9 \\ 15 & 16 & 17 & \mathbf{1 8} & 19\end{array}\right)$
(b) Find all the solutions of the following systems of linear homogeneous equations $x+y+z=0,2 x+5 y+7 z=0,2 x-5 y+3 z=0$.
7. Express the following quadratic form as 'sum of squares' by congruent transformation and write down the corresponding linear transformation $Q=10 x^{2}+y^{2}+z^{2}-6 x y-$ $2 \mathrm{yz}+\mathrm{xz}$.
8. (a) The table given below reveals the velocity v of a body during the specified time t. Find the acceleration at $\mathrm{t}=1.1$.

t:	1.0	1.1	1.2	1.3	1.4
v:	43.1	47.7	52.1	56.4	60.8

(b) Evaluate $\int_{0}^{1} \frac{d x}{1+x}$ by
i. Trapezoidal rule
ii. Simpson's one-third rule.

I B.Tech Examinations,June 2011
 MATHEMATICAL METHODS

Common to ME, BME, IT, MECT, MEP, AME, ICE, E.COMP.E, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. Determine the characteristic roots and the corresponding characteristic vectors of the matrix $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$
2. Find the value of $y(0.1)$ and $y(0.2)$ from $\frac{d^{2} y}{d x^{2}}-x \cdot\left(\frac{d y}{d x}\right)^{2}+y^{2}=0 ; y(0)=1, y^{\prime}(0)=0$ by using Taylor's series correct to 4 decimal places.
3. (a) Solve the following by iteration method: $\mathrm{x}^{3}+\mathrm{x}^{2}=100$
(b) Solve for a positive root by False position method: $\mathrm{e}^{-x}=\sin \mathrm{x} . \quad[8+8]$
4. (a) If $f(x)=\left\{\begin{array}{l}k x ; 0<x<\frac{\pi}{2} \\ k(\pi-x) ; \frac{\pi}{2}<x<\pi\end{array}\right.$

Find the half-range sine series.
(b) Find the Fourier expansion of $\mathrm{f}(\mathrm{x})=\mathrm{x} \cos \mathrm{x} ; 0<\mathrm{x}<2 \pi$.
5. Express the following quadratic form as 'sum of squares' by congruent transformation and write down the corresponding linear transformation $Q=10 x^{2}+y^{2}+z^{2}-6 x y-$ $2 \mathrm{yz}+\mathrm{xz}$.
6. (a) The table given below reveals the velocity v of a body during the specified time t. Find the acceleration at $\mathrm{t}=1.1$.
$\begin{array}{llllll}\mathrm{t}: & 1.0 & 1.1 & 1.2 & 1.3 & 1.4\end{array}$
$\begin{array}{llllll}\text { v: } & 43.1 & 47.7 & 52.1 & 56.4 & 60.8\end{array}$
(b) Evaluate $\int_{0}^{1} \frac{d x}{1+x}$ by
i. Trapezoidal rule
ii. Simpson's one-third rule.
7. (a) Find the rank of $\left(\begin{array}{ccccc}3 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 7 & 8 & 9 \\ 15 & 16 & 17 & \mathbf{1 8} & 19\end{array}\right)$
(b) Find all the solutions of the following systems of linear homogeneous equations $x+y+z=0,2 x+5 y+7 z=0,2 x-5 y+3 z=0$.
8. (a) Solve $\mathrm{z}=\mathrm{px}+\mathrm{qy}+\mathrm{p}^{2} q^{2}$
(b) Using Convolution theorem, find the inverse-Z transform of $\frac{1}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-\frac{1}{4} z^{-1}\right)}$.

I B.Tech Examinations,June 2011
 MATHEMATICAL METHODS

Common to ME, BME, IT, MECT, MEP, AME, ICE, E.COMP.E, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) The table given below reveals the velocity v of a body during the specified time t. Find the acceleration at $\mathrm{t}=1.1$.
$\begin{array}{llllll}\mathrm{t}: & 1.0 & 1.1 & 1.2 & 1.3 & 1.4\end{array}$
$\begin{array}{llllll}\text { v: } & 43.1 & 47.7 & 52.1 & 56.4 & 60.8\end{array}$
(b) Evaluate $\int_{0}^{1} \frac{d x}{1+x}$ by
i. Trapezoidal rule
ii. Simpson's one-third rule.
2. Express the following quadratic form as 'sum of squares' by congruent transformation and write down the corresponding inear transformation $Q=10 x^{2}+y^{2}+z^{2}-6 x y-$ $2 \mathrm{yz}+\mathrm{xz}$.
3. Find the value of $y(0.1)$ and $y(0.2)$ from $\frac{d^{2} y}{d x^{2}}-x \cdot\left(\frac{d y}{d x}\right)^{2}+y^{2}=0 ; \mathrm{y}(0)=1, y^{\prime}(0)=0$ by using Taylor's series correct to 4 decimal places.
4. (a) Solve the following by iteration method: $\mathrm{x}^{3}+\mathrm{x}^{2}=100$
(b) Solve for a positive root by False position method: $\mathrm{e}^{-x}=\sin \mathrm{x}$.
5. (a) If $f(x)=\left\{\begin{array}{l}k x ; 0<x<\frac{\pi}{2} \\ k(\pi-x) ; \frac{\pi}{2}<x<\pi\end{array}\right.$

Find the half-range sine series.
(b) Find the Fourier expansion of $f(x)=x \cos ; 0<x<2 \pi$.
6. (a) Find the rank of $\left(\begin{array}{ccccc}3 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 7 & 8 & 9 \\ 15 & 16 & 17 & 18 & 19\end{array}\right)$
(b) Find all the solutions of the following systems of linear homogeneous equations $\mathrm{x}+\mathrm{y}+\mathrm{z}=0,2 \mathrm{x}+5 \mathrm{y}+7 \mathrm{z}=0,2 \mathrm{x}-5 \mathrm{y}+3 \mathrm{z}=0$.
7. (a) Solve $z=p x+q y+p^{2} q^{2}$
(b) Using Convolution theorem, find the inverse-Z transform of $\frac{1}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-\frac{1}{4} z^{-1}\right)}$.
8. Determine the characteristic roots and the corresponding characteristic vectors of the matrix $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$

