R07

Set No. 2

NKE

I B.Tech Examinations, June 2011 NUMERICAL METHODS Aeronautical Engineering

Time: 3 hours

Code No: R07A1BS09

Max Marks: 80

[8+8]

[8+8]

Answer any FIVE Questions All Questions carry equal marks *****

1. (a) Evaluate $\int_{0}^{6} \frac{1}{1+x} dx$ using

i. Simpson's $\frac{3}{8}$ rule

- ii. Weddle's rule
- (b) Fit the Cubic spline for

Х	0	1	3
у	1	0	2

Hence find f(0.75) and f(1.75). $\int f(x) dx$

2. (a) Solve the Laplace's equation in the region as shown in Figure 7a; by Liebmann's principle.

(b) Derive the Two dimentional Heat flow equation in steady state(Laplace's equation) [8+8]

3. Find the root of the equation $\sin x = 1 + x^3$ between (-2,-1) using

- (a) Regular falsi method.
- (b) Newton's method.
- 4. (a) Using Gauss-Jordan method solve 10x - 2y + 3z = 23, 2x + 10y - 5z = -33, 3x - 4y + 10z = 41
 - (b) Solve the system of equations by Gauss elimination method 4x + 2y + z = 14, x + 5y z = 10, x + y + 8z = 20 [8+8]

R07

Set No. 2

- 5. (a) Using Euler's method find y (0.2) given $dy/dx = \log(x + y)$ and y (0) = 1, h = 0.2.
 - (b) Solve by Taylor series method $dy/dx = y + x^3$ for x = 1.1, 1.2 given y (1) = 1. [8+8]
- 6. (a) Determine the maximum step size that can be used in the tabulation of $f(x)=e^x$ in [0,1], so that the error in linear interpolation be less than $5x10^{-4}$.
 - (b) Evaluate $\Delta^{10}(1-ax)(1-bx^2)(1-cx^3)(1-dx^4)$. [12+4]
- 7. (a) Fit a curve $y=a+bx+cx^2$ to the data:

X	0	1	2	3	4
у	1	0	3	10	21

Code No: R07A1BS09

(b) Find the curve of best fit for the data below:

X	120	110	100	90	80	70	60	[8 8]
У	0.0051	0.0059	0.0071	0.0085	0.00102	0.00124	0.00148	[0+0]

- 8. (a) If the scalar product is given by $\langle g, h \rangle = \int_{a}^{b} g(x)h(x)w(x)dx$ then prove that $P_k(\mathbf{x})$ has k simple real zeros, all of which lie in the interval (a,b).
 - (b) Use FFT to calculate approximately the Fourier coefficients $\hat{f}(j)$ for
 - i. $f(x) = \sin 3x$
 - ii. f(x)=sin(πx) using, e.g., N=81 or 324 or whatever.Why do the Fourier coefficients for f(x)=sin(πx) fail to decay rapidly as |j| increases? [8+8]

R07

Set No. 4

I B.Tech Examinations, June 2011 NUMERICAL METHODS Aeronautical Engineering

Time: 3 hours

Code No: R07A1BS09

Max Marks: 80

[8+8]

Answer any FIVE Questions All Questions carry equal marks *****

- 1. Find the root of the equation $\sin x = 1 + x^3$ between (-2,-1) using
 - (a) Regular falsi method.
 - (b) Newton's method.
- 2. (a) Using Gauss-Jordan method solve 10x - 2y + 3z = 23, 2x + 10y - 5z = -33, 3x - 4y + 10z
 - (b) Solve the system of equations by Gauss elimination method 4x + 2y + z = 14, x + 5y z = 10, x + y + 8z = 20 [8+8]
- 3. (a) Solve the Laplace's equation in the region as shown in Figure 7a; by Liebmann's principle.

Figure 7a

- 4. (a) Evaluate $\int_{0}^{6} \frac{1}{1+x} dx$ using
 - i. Simpson's $\frac{3}{8}$ rule
 - ii. Weddle's rule
 - (b) Fit the Cubic spline for

Χ	0	1	3
у	1	0	2

Hence find f(0.75) and f(1.75). $\int_{0}^{3} f(x)dx$ [8+8]

R07

Set No. 4

5. (a) Fit a curve $y=a+bx+cx^2$ to the data:

Х	0	1	2	3	4
у	1	0	3	10	21

Code No: R07A1BS09

(b) Find the curve of best fit for the data below:

X	120	110	100	90	80	70	60	[8 8]
у	0.0051	0.0059	0.0071	0.0085	0.00102	0.00124	0.00148	[0+0]

6. (a) Using Euler's method find y (0.2) given $dy/dx = \log(x + y)$ and y (0) = 1, h = 0.2.

(b) Solve by Taylor series method $dy/dx = y + x^3$ for x = 1.1, 1.2 given y (1) = 1. [8+8]

7. (a) If the scalar product is given by $\langle g, h \rangle = \int_{a}^{b} g(x)h(x)w(x)dx$ then prove that $P_{k}(\mathbf{x})$ has k simple real zeros, all of which lie in the interval (a,b).

- (b) Use FFT to calculate approximately the Fourier coefficients $\hat{f}(j)$ for
 - i. $f(x) = \sin 3x$
 - ii. $f(x)=\sin(\pi x)$ using, e.g., N=81 or 324 or whatever. Why do the Fourier coefficients for $f(x)=\sin(\pi x)$ fail to decay rapidly as |j| increases? [8+8]
- 8. (a) Determine the maximum step size that can be used in the tabulation of $f(x)=e^x$ in [0,1], so that the error in linear interpolation be less than $5x10^{-4}$.
 - (b) Evaluate $\Delta^{10}(1 ax)(1 bx^2)(1 cx^3)(1 dx^4)$. [12+4] ****

 $\mathbf{R07}$

Set No. 1

KEK

I B.Tech Examinations, June 2011 NUMERICAL METHODS Aeronautical Engineering

Time: 3 hours

Code No: R07A1BS09

Max Marks: 80

[8+8]

[8+8]

Answer any FIVE Questions All Questions carry equal marks *****

1. (a) Evaluate $\int_{0}^{6} \frac{1}{1+x} dx$ using

- i. Simpson's $\frac{3}{8}$ rule
- ii. Weddle's rule
- (b) Fit the Cubic spline for

Х	0	1	3
у	1	0	2

Hence find f(0.75) and f(1.75). $\check{\int} f(x) dx$

- 2. (a) If the scalar product is given by $\langle g, h \rangle = \int_{a}^{b} g(x)h(x)w(x)dx$ then prove that $P_k(\mathbf{x})$ has k simple real zeros, all of which lie in the interval (a,b).
 - (b) Use FFT to calculate approximately the Fourier coefficients $\hat{f}(j)$ for

i. f(x)=sin3x
ii. f(x)=sin(πx) using, e.g., N=81 or 324 or whatever.Why do the Fourier coefficients for f(x)=sin(πx) fail to decay rapidly as |j| increases? [8+8]

- 3. Find the root of the equation $\sin x = 1 + x^3$ between (-2,-1) using
 - (a) Regular falsi method.
 - (b) Newton's method.
- 4. (a) Solve the Laplace's equation in the region as shown in Figure 7a; by Liebmann's principle.

www.firstranker.com

R07

Set No. 1

- (b) Derive the Two dimensional Heat flow equation in steady state (Laplace's equation) $[8\!+\!8]$
- 5. (a) Determine the maximum step size that can be used in the tabulation of $f(x)=e^x$ in [0,1], so that the error in linear interpolation be less than $5x10^{-4}$.
 - (b) Evaluate $\Delta^{10}(1-ax)(1-bx^2)(1-cx^3)(1-dx^4)$. [12+4]
- 6. (a) Fit a curve $y=a+bx+cx^2$ to the data:

X	0	1	2	3	4
у	1	0	3	10	21

Code No: R07A1BS09

(b) Find the curve of best fit for the data below:

X	120	110	100	90	80	70	60	[8 8]
у	0.0051	0.0059	0.0071	0.0085	0.00102	0.00124	0.00148	[0+0]

- 7. (a) Using Gauss-Jordan method solve 10x - 2y + 3z = 23, 2x + 10y - 5z = -33, 3x - 4y + 10z = 41
 - (b) Solve the system of equations by Gauss elimination method 4x + 2y + z = 14, x + 5y z = 10, x + y + 8z = 20 [8+8]
- 8. (a) Using Euler's method find y (0.2) given $dy/dx = \log(x + y)$ and y (0) = 1, h = 0.2.
 - (b) Solve by Taylor series method $dy/dx = y + x^3$ for x = 1.1, 1.2 given y (1) = 1. [8+8]

 $\mathbf{R07}$

Set No. 3

Max Marks: 80

[8+8]

I B.Tech Examinations, June 2011 NUMERICAL METHODS Aeronautical Engineering

Time: 3 hours

Code No: R07A1BS09

Answer any FIVE Questions All Questions carry equal marks

1. (a) Fit a curve $y=a+bx+cx^2$ to the data:

Х	0	1	2	3	4
У	1	0	3	10	21

(b) Find the curve of best fit for the data below:

Х	120	110	100	90	80	70	60	[0 0]
у	0.0051	0.0059	0.0071	0.0085	0.00102	0.00124	0.00148	[0+0]

2. (a) Determine the maximum step size that can be used in the tabulation of $f(x)=e^x$ in [0,1], so that the error in linear interpolation be less than $5x10^{-4}$.

(b) Evaluate
$$\Delta^{10}(1 - ax)(1 - bx^2)(1 - cx^3)(1 - dx^4)$$
. [12+4]

3. (a) Evaluate
$$\int_{0}^{6} \frac{1}{1+x} dx$$
 using

- i. Simpson's $\frac{3}{8}$ ru
- ii. Weddle's rule
- (b) Fit the Cubic spline for

Hence find f(0.75) and f(1.75). $\int_{0}^{3} f(x) dx$

- 4. (a) If the scalar product is given by $\langle g, h \rangle = \int_{a}^{b} g(x)h(x)w(x)dx$ then prove that $P_{k}(\mathbf{x})$ has k simple real zeros, all of which lie in the interval (a,b).
 - (b) Use FFT to calculate approximately the Fourier coefficients $\hat{f}(j)$ for
 - i. $f(x) = \sin 3x$
 - ii. $f(x)=\sin(\pi x)$ using, e.g., N=81 or 324 or whatever. Why do the Fourier coefficients for $f(x)=\sin(\pi x)$ fail to decay rapidly as |j| increases? [8+8]
- 5. (a) Using Euler's method find y (0.2) given $dy/dx = \log(x + y)$ and y (0) = 1, h = 0.2.
 - (b) Solve by Taylor series method $dy/dx = y + x^3$ for x = 1.1, 1.2 given y (1) = 1. [8+8]

www.firstranker.com

Code No: R07A1BS09

$\mathbf{R07}$

Set No. 3

- 6. (a) Using Gauss-Jordan method solve 10x - 2y + 3z = 23, 2x + 10y - 5z = -33, 3x - 4y + 10z = 41
 - (b) Solve the system of equations by Gauss elimination method 4x + 2y + z = 14, x + 5y z = 10, x + y + 8z = 20 [8+8]
- 7. (a) Solve the Laplace's equation in the region as shown in Figure 7a; by Liebmann's principle.

(b) Derive the Two dimensional Heat flow equation in steady state(Laplace's equation) [8+8]

- 8. Find the root of the equation $\sin x = 1 + x^3$ between (-2,-1) using
 - (a) Regular falsi method.
 - (b) Newton's method.

[8+8]