I B.Tech Examinations,June 2011
 NUMERICAL METHODS
 Aeronautical Engineering

Max Marks: 80
Time: 3 hours
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Evaluate $\int_{0}^{6} \frac{1}{1+x} d x$ using
i. Simpson's $\frac{3}{8}$ rule
ii. Weddle's rule
(b) Fit the Cubic spline for

x	0	1	3
y	1	0	2

Hence find $f(0.75)$ and $f(1.75)$. $\int^{3} f(x) d x$
2. (a) Solve the Laplace's equation in the region as shown in Figure 7a; by Liebmann's principle.

Figure 7a
(b) Derive the Two dimentional Heat flow equation in steady state(Laplace'seqution)
3. Find the root of the equation $\sin x=1+x^{3}$ between ($-2,-1$) using
(a) Regular falsi method.
(b) Newton's method.
4. (a) Using Gauss-Jordan method solve
$10 x-2 y+3 z=23,2 x+10 y-5 z=-33,3 x-4 y+10 z=41$
(b) Solve the system of equations by Gauss elimination method $4 x+2 y+z=14, x+5 y-z=10, x+y+8 z=20$
5. (a) Using Euler's method find $y(0.2)$ given $d y / d x=\log (x+y)$ and $y(0)=1, h$ $=0.2$.
(b) Solve by Taylor series method $\mathrm{dy} / \mathrm{dx}=\mathrm{y}+x^{3}$ for $\mathrm{x}=1.1,1.2$ given $\mathrm{y}(1)=$ 1. [8+8]
6. (a) Determine the maximum step size that can be used in the tabulation of $\mathrm{f}(\mathrm{x})=e^{x}$ in $[0,1]$, so that the error in linear interpolation be less than 5×10^{-4}.
(b) Evaluate $\Delta^{10}(1-a x)\left(1-\mathrm{bx}^{2}\right)\left(1-\mathrm{cx}^{3}\right)\left(1-\mathrm{dx}^{4}\right)$. [12+4]
7. (a) Fit a curve $y=a+b x+c x^{2}$ to the data:

x	0	1	2	3	4
y	1	0	3	10	21

(b) Find the curve of best fit for the data below:

x	120	110	100	90	80	70	60
y	0.0051	0.0059	0.0071	0.0085	0.00102	0.00124	0.00148

8. (a) If the scalar product is given by $<g, h>=\int_{a} g(x) h(x) w(x) d x$ then prove that $P_{k}(\mathrm{x})$ has k simple real zeros, all of which lie in the interval (a, b).
(b) Use FFT to calculate approximately the Fourier coefficients $\hat{f}(j)$ for
i. $f(x)=\sin 3 x$
ii. $\mathrm{f}(\mathrm{x})=\sin (\pi \mathrm{x})$ using, e.g., $\mathrm{N}=81$ or 324 or whatever. Why do the Fourier ceefficients for $\mathrm{f}(\mathrm{x})=\sin (\pi \mathrm{x})$ fail to decay rapidly as $|j|$ increases? [8+8]

I B.Tech Examinations,June 2011
NUMERICAL METHODS
Aeronautical Engineering
Max Marks: 80
Time: 3 hours
Answer any FIVE Questions
All Questions carry equal marks

1. Find the root of the equation $\sin x=1+x^{3}$ between $(-2,-1)$ using
(a) Regular falsi method.
(b) Newton's method.
2. (a) Using Gauss-Jordan method solve
$10 x-2 y+3 z=23,2 x+10 y-5 z=-33,3 x-4 y+10 z=41$
(b) Solve the system of equations by Gauss elimination method
$4 x+2 y+z=14, x+5 y-z=10, x+y+8 z=20$
[8+8]
3. (a) Solve the Laplace's equation in the region as shown in Figure 7a; by Liebmann's principle.

Figure 7a
(b) Derive the Two dimentional Heat flow equation in steady state(Laplace'seqution)
[8+8]
4. (a) Evaluate $\int_{0}^{6} \frac{1}{1+x} d x$ using
i. Simpson's $\frac{3}{8}$ rule
ii. Weddle's rule
(b) Fit the Cubic spline for

x	0	1	3
y	1	0	2

Hence find $\mathrm{f}(0.75)$ and $\mathrm{f}(1.75) . \int_{0}^{3} f(x) d x$
5. (a) Fit a curve $y=a+b x+c x^{2}$ to the data:

x	0	1	2	3	4
y	1	0	3	10	21

(b) Find the curve of best fit for the data below:

x	120	110	100	90	80	70	60
y	0.0051	0.0059	0.0071	0.0085	0.00102	0.00124	0.00148

6. (a) Using Euler's method find $y(0.2)$ given $d y / d x=\log (x+y)$ and $y(0)=1, h$ $=0.2$.
(b) Solve by Taylor series method $\mathrm{dy} / \mathrm{dx}=\mathrm{y}+x^{3}$ for $\mathrm{x}=1.1$. 1.2 given $\mathrm{y}(1)=$ 1.
7. (a) If the scalar product is given by $\langle g, h\rangle=\int^{b} g(x) h(x) u(x) d x$ then prove that $P_{k}(\mathrm{x})$ has k simple real zeros, all of which lie in the interval (a, b).
(b) Use FFT to calculate approximately the Fourier coefficients $\hat{f}(j)$ for
i. $f(x)=\sin 3 x$
ii. $\mathrm{f}(\mathrm{x})=\sin (\pi \mathrm{x})$ using, e.g., $\mathrm{N}=81$ or 324 or whatever. Why do the Fourier coefficients for $\mathrm{f}(\mathrm{x})=\sin (\pi \mathrm{x})$ fail to decay rapidly as $|j|$ increases? [8+8]
8. (a) Determine the maximumstep size that can be used in the tabulation of $\mathrm{f}(\mathrm{x})=e^{x}$ in $[0,1]$, so that the error in linear interpolation be less than 5×10^{-4}.
(b) Evaluate $\Delta{ }^{10}(1-a x)\left(1-b x^{2}\right)\left(1-c x^{3}\right)\left(1-d x^{4}\right)$. $[12+4]$

I B.Tech Examinations,June 2011
 NUMERICAL METHODS
 Aeronautical Engineering

Max Marks: 80
Time: 3 hours
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Evaluate $\int_{0}^{6} \frac{1}{1+x} d x$ using
i. Simpson's $\frac{3}{8}$ rule
ii. Weddle's rule
(b) Fit the Cubic spline for

x	0	1	3
y	1	0	2

Hence find $f(0.75)$ and $f(1.75)$.
2. (a) If the scalar product is given by $\leqslant g, h>=\int_{a}^{b} g(x) h(x) w(x) d x$ then prove that $P_{k}(\mathrm{x})$ has k simple real zeros, all of which lie in the interval (a, b).
(b) Use FFT to calculate approximately the Fourier coefficients $\hat{f}(j)$ for i. $\mathrm{f}(\mathrm{x})=\sin 3 \mathrm{x}$
ii. $f(x)=\sin (\pi x)$ using, e.g., $N=81$ or 324 or whatever. Why do the Fourier coefficients for $\mathrm{f}(\mathrm{x})=\sin (\pi \mathrm{x})$ fail to decay rapidly as $|j|$ increases? [8+8]
3. Find the root of the equation $\sin x=1+x^{3}$ between ($-2,-1$) using
(a) Regular falsi method.
(b) Newton's method.
4. (a) Solve the Laplace's equation in the region as shown in Figure 7a; by Liebmann's principle.

Figure 7a
(b) Derive the Two dimentional Heat flow equation in steady state(Laplace'seqution)

$$
[8+8]
$$

5. (a) Determine the maximum step size that can be used in the tabulation of $\mathrm{f}(\mathrm{x})=e^{x}$ in $[0,1]$, so that the error in linear interpolation be less than 5×10^{-4}.
(b) Evaluate $\Delta^{10}(1-a x)\left(1-b x^{2}\right)\left(1-c x^{3}\right)\left(1-d x^{4}\right)$.
6. (a) Fit a curve $\mathrm{y}=\mathrm{a}+\mathrm{bx}+c x^{2}$ to the data:

x	0	1	2	3	4
y	1	0	3	10	21

(b) Find the curve of best fit for the data below:

x	120	110	100	90	80	70	60
y	0.0051	0.0059	0.0071	0.0085	0.00102	0.00124	0.00148

7. (a) Using Gauss-Jordan method solve $10 x-2 y+3 z=23,2 x+10 y-5 z=-33,3 x-4 y+10 z=41$
(b) Solve the system of equations by Gauss elimination method $4 x+2 y+z=14, x+5 y-z=10, x+y+8 z=20$
8. (a) Using Euler's method find y (0.2) given $d y / d x=\log (x+y)$ and $y(0)=1, h$ $=0.2$.
(b) Solve by Taylor series method $\mathrm{dy} / \mathrm{dx}=\mathrm{y}+x^{3}$ for $\mathrm{x}=1.1,1.2$ given $\mathrm{y}(1)=$ 1.

$$
[8+8]
$$

I B.Tech Examinations,June 2011
 NUMERICAL METHODS
 Aeronautical Engineering

Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks
Time: 3 hours

1. (a) Fit a curve $y=a+b x+c x^{2}$ to the data:

x	0	1	2	3	4
y	1	0	3	10	21

(b) Find the curve of best fit for the data below:

x	120	110	100	90	80	70	60
y	0.0051	0.0059	0.0071	0.0085	0.00102	0.00124	0.00148
	$[8+8]$						

2. (a) Determine the maximum step size that can be used in the tabulation of $\mathrm{f}(\mathrm{x})=e^{x}$ in $[0,1]$, so that the error in linear interpolation be less than 5×10^{-4}.
(b) Evaluate $\Delta^{10}(1-a x)\left(1-b x^{2}\right)\left(1-c x^{3}\right)\left(1-d x^{4}\right)$.
3. (a) Evaluate $\int_{0}^{6} \frac{1}{1+x} d x$ using
i. Simpson's $\frac{3}{8}$ rule
ii. Weddle's rule
(b) Fit the Cubic spline for

x	0	1	3
y	1	0	2

Hence find $\mathrm{f}(0.75)$ and $\mathrm{f}(1.75)$. $\int_{0}^{3} f(x) d x$
4. (a) If the scalar product is given by $\langle g, h\rangle=\int_{a}^{b} g(x) h(x) w(x) d x$ then prove that $P_{k}(\mathrm{x})$ has k simple real zeros, all of which lie in the interval (a, b).
(b) Use FFT to calculate approximately the Fourier coefficients $\hat{f}(j)$ for
i. $f(x)=\sin 3 x$
ii. $f(x)=\sin (\pi x)$ using, e.g., $N=81$ or 324 or whatever. Why do the Fourier coefficients for $\mathrm{f}(\mathrm{x})=\sin (\pi \mathrm{x})$ fail to decay rapidly as $|j|$ increases? [8+8]
5. (a) Using Euler's method find $y(0.2)$ given $d y / d x=\log (x+y)$ and $y(0)=1, h$ $=0.2$.
(b) Solve by Taylor series method $\mathrm{dy} / \mathrm{dx}=\mathrm{y}+x^{3}$ for $\mathrm{x}=1.1,1.2$ given $\mathrm{y}(1)=$ 1.
6. (a) Using Gauss-Jordan method solve $10 x-2 y+3 z=23,2 x+10 y-5 z=-33,3 x-4 y+10 z=41$
(b) Solve the system of equations by Gauss elimination method $4 x+2 y+z=14, x+5 y-z=10, x+y+8 z=20$
7. (a) Solve the Laplace's equation in the region as shown in Figure 7a; by Liebmann's principle.

(b) Derive the Two dimentional Heat How equation in steady state(Laplace'seqution)
[8+8]
8. Find the root of the equation $\sin x=1+x^{3}$ between $(-2,-1)$ using
(a) Regular falsi method.
(b) Newton's method.

