I B.Tech Examinations,June 2011
 NETWORK ANALYSIS

Common to BME, E.COMP.E, ETM, E.CONT.E, EIE, ECE
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. A network has two branches in parallel. The branch 'a' has a 5Ω resistance and 15Ω capacitive reactance in series. The branch ' b ' has 10Ω resistance and 12Ω inductive reactance in series. It is fed from $100 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find
(a) Branch currents.
(b) Circuit current
(c) Power factor of the circuit
(d) Total active power.
2. Design a T-type and π-type attenuator if the characteristic resistance is 200Ω and the attenuation is 200 dB .
3. For the figure 1 shown, calculate the equivalent resistance of the following combination of resistors and also ealculate the source current, total power dissipated.

Figure 1:
4. A series RLC circuit with $\mathrm{R}=50 \Omega, \mathrm{~L}=0.1 \mathrm{H}$ and $\mathrm{C}=50 \mu \mathrm{~F}$ has a constant voltage, $\mathrm{V}=100$ volts applied at $\mathrm{t}=0$. Find the current transient assuming zero initial charge on the capacitor.
5. State, explain and prove Reciprocity Theorem.
6. A symmetrical 3 phase, 400 V system supplies a balanced mesh connected load. The current in each branch circuit is 20A and the phase angle is 40 deg lag. Find
(a) the line current
(b) the total power.
7. Calculate the Y - parameters of the circuit as shown in fig. 3 and draw the corresponding equivalent circuit.

Figure 3
8. For the network shown in figure 2, draw the oriented graph, select a tree and obtain a tie-set matrix. Write down the KVL equations from the tie-set matrix.

Figure 2

I B.Tech Examinations,June 2011
 NETWORK ANALYSIS

Common to BME, E.COMP.E, ETM, E.CONT.E, EIE, ECE
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. A network has two branches in parallel. The branch 'a' has a 5Ω resistance and 15Ω capacitive reactance in series. The branch 'b' has 10Ω resistance and 12Ω inductive reactance in series. It is fed from $100 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find
(a) Branch currents.
(b) Circuit current
(c) Power factor of the circuit
(d) Total active power.
2. For the figure 2 shown, calculate the equivalent resistance of the following combination of resistors and also calculate the source current, total power dissipated.

Figure 2:
3. For the network shown in figure 3, draw the oriented graph, select a tree and obtain a tie-set matrix. Write down the KVL equations from the tie-set matrix.

Figure 3
4. Calculate the Y - parameters of the circuit as shown in fig. 4 and draw the corresponding equivalent circuit.

Figure 4
5. State, explain and prove Reciprocity Theorem.
6. A symmetrical 3 phase, 400 V system supplies a balanced mesh connected load. The current in each branch circuit is 20 A and the phâse angle is 40 deg lag. Find
(a) the line current
(b) the total power.
7. Design a T-type and π-type attenuator if the characteristic resistance is 200Ω and the attenuation is 200 dB .
8. A series RLC circuit with $\mathrm{R}=50 \Omega, \mathrm{~L}=0.1 \mathrm{H}$ and $\mathrm{C}=50 \mu \mathrm{~F}$ has a constant voltage, $\mathrm{V}=100$ volts applied at $\mathrm{t}=0$. Find the current transient assuming zero initial charge on the capacitor.

I B.Tech Examinations,June 2011
 NETWORK ANALYSIS

Common to BME, E.COMP.E, ETM, E.CONT.E, EIE, ECE
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. Calculate the Y - parameters of the circuit as shown in fig. 1 and draw the corresponding equivalent circuit.
[16]

Figure 1
2. For the network shown in figure 2, draw the oriented graph, select a tree and obtain a tie-set matrix. Write down the KVL equations from the tie-set matrix.

Figure 2
3. A series RLC circuit with $\mathrm{R}=50 \Omega, \mathrm{~L}=0.1 \mathrm{H}$ and $\mathrm{C}=50 \mu \mathrm{~F}$ has a constant voltage, $\mathrm{V}=100$ volts applied at $\mathrm{t}=0$. Find the current transient assuming zero initial charge on the capacitor.
4. A symmetrical 3 phase, 400 V system supplies a balanced mesh connected load. The current in each branch circuit is 20A and the phase angle is 40 deg lag. Find
(a) the line current
(b) the total power.
5. State, explain and prove Reciprocity Theorem.

6 . For the figure 3 shown, calculate the equivalent resistance of the following combination of resistors and also calculate the source current, total power dissipated.

Figure 3:
7. Design a T-type and π-type attenuator if the characteristic resistance is 200Ω and the attenuation is 200 dB .
8. A network has two branches in parallel. The branch 'a' has a 5Ω resistance and 15Ω capacitive reactance in series. The branch 'b' has 10Ω resistance and 12Ω inductive reactance in series. It is fed from $100 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find
(a) Branch currents.
(b) Circuit current
(c) Power factor of the circuit
(d) Total active power.

I B.Tech Examinations,June 2011
 NETWORK ANALYSIS

Common to BME, E.COMP.E, ETM, E.CONT.E, EIE, ECE
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. Design a T-type and π-type attenuator if the characteristic resistance is 200Ω and the attenuation is 200 dB .
2. For the network shown in figure 2, draw the oriented graph, select atree and obtain a tie-set matrix. Write down the KVL equations from the tie-set matrix.
[16]

Figure 2
3. Calculate the Y - parameters of the circuit as shown in fig. 3 and draw the corresponding equivalent circuit.

Figure 3
4. For the figure 4 shown, calculate the equivalent resistance of the following combination of resistors and also calculate the source current, total power dissipated.
5. A series RLC circuit with $\mathrm{R}=50 \Omega, \mathrm{~L}=0.1 \mathrm{H}$ and $\mathrm{C}=50 \mu \mathrm{~F}$ has a constant voltage, $\mathrm{V}=100$ volts applied at $\mathrm{t}=0$. Find the current transient assuming zero initial charge on the capacitor.
6. A network has two branches in parallel. The branch ' a ' has a 5Ω resistance and 15Ω capacitive reactance in series. The branch ' b ' has 10Ω resistance and 12Ω inductive reactance in series. It is fed from $100 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find

Figure 4:
(a) Branch currents.
(b) Circuit current
(c) Power factor of the circuit
(d) Total active power.
7. State, explain and prove Reciprocity Theorem.
8. A symmetrical 3 phase, 400 V system supplies a balanced mesh connected load. The current in each branch circuit is 20 A and the phase angle is 40 deg lag. Find
(a) the line current
(b) the total power.

