II B.TECH - II SEMESTER EXAMINATIONS, APRIL/MAY, 2011 NETWORK THEORY
 (ELECTRICAL AND ELECTRONICS ENGINEERING)

Time: 3hours
Max. Marks: 75

Answer any FIVE questions
 All Questions Carry Equal Marks

1.a) Derive the expression for the power measured and power factor in the two watt meter method applied for balanced loads.
b) A 3-phase 500 V motor operates at a power factor of 0.4 and takes an input power of 30 kW . Two watt meters are employed to measure the input power. Find readings on each instrument.
2.a) The circuit shown in the figure 1 has no stored energy. Find the Laplace transform of current supplied by the battery up on the closure of switch at $t=0$. Hence find the initial and final values of the current.

b) Explain the procedure adopted for the evaluation of initial conditions.
3.a) Derive expression for the transient response of an R L series circuit excited by sinusoidal excitation.
b) A series R C circuit with $\mathrm{R}=100 \Omega$ and $\mathrm{C}=25 \mu \mathrm{~F}$ has a sinusoidal excitation $\mathrm{V}(\mathrm{t})=250 \mathrm{Sin} 500 \mathrm{t}$. Find the total current assuming that the capacitor is initially uncharged.
4.a) Find the transform impedance of the network shown in below figure 2 .
b) What is a transfer function? Explain the necessary conditions for transfer functions.

Figure 2
5.a) For the circuit shown in the figure 3 find Z and Y parameters.

Figure 3
b) Express Y - parameters in terms of h - parameters.
6. Find the Y - parameters and ABCD parameters for the following network (figure 4).

Figure 4
7.a) Explain the general configuration and parameters of a constant - K low pass filter T and π - Sections.
b) Design a constant - K T-Section and π - section low pass filter having cut off frequency $\mathrm{f}_{\mathrm{c}}=2 \mathrm{kHz}$ and normal impedance $\mathrm{Z} 0=600 \Omega$.
8.a) Determine the function $\mathrm{f}(\mathrm{t})$ if the Fourier Transform of the function is

$$
F(j w)=\begin{array}{lr}
\mathrm{Ae}^{\mathrm{j} \pi / 2} & -\mathrm{w}_{0}<\mathrm{w}<0 \\
\mathrm{Ae}^{-\mathrm{j} \pi / 2} & 0<\mathrm{w}<\mathrm{w}_{0}
\end{array}
$$

b) Determine the Fourier series of the wave form shown in figure 5using Trigonometric series.

Figure 5

II B.TECH - II SEMESTER EXAMINATIONS, APRIL/MAY, 2011 NETWORK THEORY
 (ELECTRICAL AND ELECTRONICS ENGINEERING)

Time: 3hours
Max. Marks: 75

Answer any FIVE questions
 All Questions Carry Equal Marks

1.a) Derive expression for the power measured in two watt meter method for un balanced loads.
b) The two watt meter readings in a 3 - phase power measurement are 800 W and 400 W . The latter reading is being obtained after the reversal of current coil. Calculate the total power and power factor of the load.
2.a) A current source of the figure 1 shown below supplies at current

$$
\begin{array}{ll}
\mathrm{i}(\mathrm{t})=0, & t \leq 0 \\
\mathrm{i}(\mathrm{t})=\mathrm{t}, & \mathrm{t}>0 .
\end{array}
$$

Find $V_{0}(\mathrm{t})$

Figure 1
b) Derive the expression for the transient response of RC series circuit excited by a dc voltage source. Use Laplace technique.
[8+7]
3.a) Derive the expression for the transient response of an RLC series circuit excited by a Sinusoidal source.
b) A Sinusoidal Voltage of $12 \sin 8 \mathrm{t}$ Volts is applied at $\mathrm{t}=0$ to a RC series of $\mathrm{R}=4 \Omega$ and $\mathrm{L}=1 \mathrm{H}$. By Laplace transform method determine the circuit current $\mathrm{i}(\mathrm{t})$ for $t \geq 0$. Assume zero initial condition.
4.a) Explain the necessary conditions for driving point functions.
b) Find the transform impedance of the following circuit (figure 2).

Figure 2
5.a) Express ABCD parameters in terms of h - parameters.
b) Determine Y - parameters of the network shown in figure 3 .

Figure 3
6. For the network shown in the figure 4. Find Y and Z - parameters.

Figure 4
7.a) What is high pass filter? Explain the general configuration and parameters of a constant - K high pass filter.
b) Design a constant -K T - section and π - section high pan filters having cut off frequency $f_{c}=10 \mathrm{KHz}$ and characteristic impedance $Z_{0}=600 \Omega$. Also find the characteristic impedance at 25 KHz .
8.a) What is Fourier transform? What are its properties?
b) Find the Fourier transform of the triangular wave shown in the figure 5 given below.

Figure 5

II B.TECH - II SEMESTER EXAMINATIONS, APRIL/MAY, 2011 NETWORK THEORY
 (ELECTRICAL AND ELECTRONICS ENGINEERING)

Time: 3hours
Max. Marks: 75

Answer any FIVE questions
All Questions Carry Equal Marks

1.a) Discuss the effect of variation of power factor on the readings of two watt meters used in 3-phase power measurement.
b) Calculate the active and reactive components of the currents in each phase of a star connected generator supplying at 11 kV to a load of 5 MW at 0.8 pf lagging. What is the value of new output if the total current is same and the pf is raised to 0.85 ? [7+8]
2.a) Derive the expressions for the transient current of RL series circuit when excited by a dc voltage.
b) The network shown in figure 1 the switch in position 1 at $\mathrm{t}=0$ and after 200 ms it is moved to position 2. What is the expression for the current flowing through the capacitor?

Figure 1
3.a) Derive expression for transient response of RC series circuit excited by a sinusoidal source.
b) A series RL circuit with $\mathrm{R}=50$ ohms and $\mathrm{L}=0.2 \mathrm{H}$ has a sinusoidal voltage source $\mathrm{V}=150 \operatorname{Sin}(500 t+\phi)$ volts applied at a time when $\phi=0$. Find the expression for the total current. Use Laplace transforms method.
4.a) What is a transfer function? What are the properties of a transfer function?
b) What are poles and zeros? Explain their significance.
c) Draw the pole-zero plots for a system with following network function.

$$
\begin{equation*}
Z(s)=\frac{\left(s^{3}+2 s^{2}+3 s+2\right)}{s^{4}+6 s^{3}+8 s^{2}} . \tag{4+4+7}
\end{equation*}
$$

5.a) Express Y-Parameter in terms of ABCD parameters.
b) Find the h-parameters for the following network shown in figure 2 .

Figure 2
6. For the following network shown in figure 3 determine h-parameters and ABCD parameters.

Figure 3
7.a) What is an m-derived filter? Explain the general configuration and parameters of mderived low pass filter for T and Π-Sections.
b) Design an m derived high pass Π-Section filter having a cut off frequency 3250 Hz . The frequency of infinite attenuation may be taken at 2750 Hz . The characteristic impedance is 450Ω.
8.a) State and explain Fourier Theorem.
b) The sweep voltage wave form is shown in the figure 4 given below. Find the exponential form of the Fourier series. Draw the frequency and phase spectrums. [7+8]

Figure 4

II B.TECH - II SEMESTER EXAMINATIONS, APRIL/MAY, 2011 NETWORK THEORY
 (ELECTRICAL AND ELECTRONICS ENGINEERING)

Time: 3hours
Max. Marks: 75

Answer any FIVE questions
 All Questions Carry Equal Marks

1.a) Explain the measurement of reactive power in a 3-phase circuit single wattmeter method.
b) A balanced 3-phase star connected load of 200 kW takes a leading current of 150 amps with a line voltage of 1200 V at 60 Hz . What are the circuit constants of the load per phase?
2.a) Derive the expression for the transient response in an RLC series circuit excited by a DC source.
b) A constant voltage is applied to a series RL circuit at $t=0$. The voltage across the inductor at $\mathrm{t}=3.46 \mathrm{~ms}$ is 20 V and 5 V at $\mathrm{t}=25 \mathrm{~ms}$. Obtain R if $\mathrm{L}=2 \mathrm{H}$.
[7+8]
3.a) A series RLC circuit with $\mathrm{R}=10 \Omega, \mathrm{~L}=0.1 \mathrm{H}$ and $\mathrm{C}=2 \mu \mathrm{~F}$ is excited by a source with $\mathrm{v}(\mathrm{t})=200 \operatorname{Cos}(250 t+\Pi / 4)$. Determine the complete solution for the current when the circuit is closed at $\mathrm{t}=0$.
b) Derive the expression for the transient response of RC series circuit excited by a sinusoidal excitation. Use Laplace transform approaeh.
4.a) How can you assess the nature of time domain response from pole-zero plot? Explain.
b) Find the transform impedance of the following circuit shown in figure 1.
[7+8]

Figure 1
5.a) Find the relationship between z and h parameters.
b) For the following network shown in figure 2 determine Y parameters.

Figure 2
6. For the following network shown in figure 3 determine Y and Z parameters.

Figure 3
7.a) What is a band pass filter? Explain the general configuration and various parameters of constant-k band pass filters for T and Π-Sections.
b) What are the steps involved in design of composite filter?
8.a) Find the exponential form of the Fourier Series expansion for the periodic rectangular pulse train shown in figure 4. Also draw frequency spectrum taking $\frac{T_{p}}{T}=\frac{1}{6}$.

Figure 4
b) What are the properties of Fourier Transform?

