

II B.TECH - II SEMESTER EXAMINATIONS, APRIL/MAY, 2011 ELECTRONIC CIRCUIT ANALYSIS (Common to Electronics & Communication Systems, Electronics & Computer Engineering, Electronics & Instrumentation Engineering, Electronics & Telematics, **Instrumentation & Control Engineering**)

Time: 3hours

Max. Marks: 75

Answer any FIVE questions **All Questions Carry Equal Marks**

1.a) For the CB amplifier circuit shown, compute R_{IN} and R_{OUT} if C₁ is i) Connected ii) Not connected The h-parameters of the transistor in CE configuration are listed as: $h_{ie} = 2.1 K\Omega$, $h_{fe} = 81$, $h_{oe} = 1.66 \mu$ Mhos and h_{re} is negligibly small.

- Reason out the causes and results of Phase & Frequency distortions in transistor b) amplifiers. [9+6]
- 2.a) Differentiate between direct and capacitive coupling of multiple stages of amplifiers.
 - b) With the help of a neat circuit diagram, describe the working of a cascode amplifier.
 - What are the merits and demerits of a cascade amplifier over a simple Common c) Emitter amplifier? [4+7+4]
- 3.a) Derive the expressions for hybrid Π conductance, g_{ce} , and g_{bb} , of a transistor.
 - b) Explain how hybrid Π parameters, g_m and g_{ce} vary with I_c , V_{ce} and temperature.
 - Compute the overall lower cut-off frequency of an identical two stage cascade of c) amplifiers with individual lower cut-off frequency given as 432 Hz. [7+4+4]
- 4.a) Discuss the effect of different type of loads to a common source MOS amplifier.
- Differentiate between cascode and folded cascode configurations. [8+7] b)
- 5.a) If negative feedback with a feedback factor, β of 0.01 is introduced into an amplifier with a gain of 200 and bandwidth of 6 MHz, obtain the resulting bandwidth of the feedback amplifier.
 - b) With the help of a suitable BJT based voltage series feedback amplifier diagram, explain the features and benefits of negative feedback in amplifiers. [6+9]

- 6.a) Substantiate the requirement of positive feedback in amplifier for oscillations. Relate the requirement to Barkhausen Criterion.
 - b) With the help of neat circuit diagram, explain how sustained oscillations are obtained in RC phase shift BJT based oscillator. Derive the expression for frequency of oscillation. [6+9]
- 7.a) A single stage class A amplifier V_{cc} =20V, V_{CEQ} =10V, I_{CQ} =600mA, R_L =16 Ω . The ac output current varies by \pm 300mA, with the ac input signal. Find
 - i) The power supplied by the dc source to the amplifier circuit.
 - ii) AC power consumed by the load resistor.
 - iii) AC power developed across the load resistor.
 - iv) DC power wasted in transistor collector.

-IRC

- v) Overall efficiency
- vi) Collector efficiency.
- b). List the advantages of complementary-symmetry configuration over push pull configuration. [9+6]
- 8. Describe the following briefly:
 a) Stagger Tuned Amplifiers Operation and comparison with synchronous tuning
 b) Heat Sinks for tuned power amplifiers. [8+7]

CODE NO: R09220402

II B.TECH - II SEMESTER EXAMINATIONS, APRIL/MAY, 2011 ELECTRONIC CIRCUIT ANALYSIS (Common to Electronics & Communication Systems, Electronics & Computer Engineering, Electronics & Instrumentation Engineering, Electronics & Telematics, **Instrumentation & Control Engineering**)

Time: 3hours

Max. Marks: 75

Answer any FIVE questions **All Questions Carry Equal Marks**

1. For the amplifier circuit shown with partially unbypassed emitter resistance, calculate the voltage gain with R₄ in place and with R₄ shorted. Consider $h_{ie} = 1.1 K\Omega$, $h_{fe} =$ 100, h_{re} & h_{oe} are negligibly small. Assume R_1 and R_2 to be 100K Ω and 22 K Ω respectively.

- Analyse what the output voltage should be if the DC power supply given to a CE b) amplifier is shorted to ground. [10+5]
- With the help of circuit diagram and equivalent circuit of a Darlington amplifier 2.a) generate the expression for the overall input impedance of the pair.
 - b) Develop a generalized expression for overall current gain(A_{IS}) when two transistor stages with $R_{OUT2} < R_L$, $R_{OUT1} > R_{IN2}$, $R_{IN1} > R_S$ and individual voltage gains are A_{V1} , A_{V2} . [7+8]
- 3.a) A transistor amplifier in CE configuration is operated at high frequency with the following specifications. f_T=6MHz, g_m =0.04, h_{fe} =50, $r_{bb'}$ =100 Ω , R_s =500 Ω , $C_{b'c}$ =10pF, R_L =100 Ω . Compute the voltage gain, upper 3dB cut-off frequency, and gain bandwidth product (GBW).
 - b) Derive an expression for the overall higher cut-off frequency of a two stage amplifier with identical stages of individual higher cut-off frequency, f_H. [7+8]
- 4.a) Discuss the effect of different type of loads to a common source MOS amplifier.
 - b) Differentiate between cascode and folded cascode configurations. [8+7]

- 5.a). If the non-linear distortion in a negative feedback amplifier with an open loop gain of 100 is reduced from 40% to 10% with feedback, compute the feedback factor, β of the amplifier.
 - b) Draw the circuit diagram of a current series feedback amplifier, Derive expressions to show the effect of negative feedback on input & output impedances, bandwidth, distortion of the amplifier. [6+9]
- 6.a) Differentiate between RC and LC type oscillators.
 - b) Derive the expression for frequency of oscillation in a Hartley Oscillator.
 - c) State Barkhausen Critterion for Oscillations

[5+7+3]

- 7.a) Derive the expression for maximum conversion efficiency for a simple series fed Class A power amplifier.
 - b) What are the drawbacks of transformer coupled power amplifiers?
 - c) A push pull amplifier utilizes a transformer whose primary has a total of 160 turns and whose secondary has 40 turns. It must be capable of delivering 40W to an 8 Ω load under maximum power conditions. What is the minimum possible value of V_{cc}?

[5+4+6]

8.a) List possible configurations of tuned amplifiers.

FRS

b) Derive an expression for bandwidth of a capacitive coupled tuned amplifier in CE configuration. Make necessary assumptions and mention them. [6+9]

CODE NO: R09220402

II B.TECH - II SEMESTER EXAMINATIONS, APRIL/MAY, 2011 ELECTRONIC CIRCUIT ANALYSIS (Common to Electronics & Communication Systems, Electronics & Computer Engineering, Electronics & Instrumentation Engineering, Electronics & Telematics, **Instrumentation & Control Engineering**)

Time: 3hours

Max. Marks: 75

Answer any FIVE questions **All Questions Carry Equal Marks**

1.a) For the common emitter amplifier shown, draw the AC and DC load lines. Determine the peak-to-peak output voltage for a sinusoidal input voltage of 30mV peak-to-peak. Assume C_1 , C_2 and C_3 are large enough to act as short circuit at the input frequency. Consider $h_{ie} = 1.1 K\Omega$, $h_{fe} = 100$, $h_{re} \& h_{oe}$ are negligibly small.

- b) State Miller's theorem. Specify its relevance in the analysis of a BJT amplifier.
- Write expressions for A_V and R_{IN} of a Common Emitter amplifier. [7+4+4]c)
- Derive expressions for overall voltage gain and overall current gain of a two-stage RC 2.a) coupled amplifier.
 - List out the special features of Darlington pair and cascode amplifiers. b) [9+6]
- 3.a) Discuss the effect of emitter bypass capacitor and input & output coupling capacitors on the lower cut-off frequency if number of amplifiers are cascaded.
 - b) Describe how an emitter follower behaves at high frequencies. [8+7]
- Discuss the effect of different types of loads to a common source MOS amplifier. 4.a)
- Differentiate between cascode and folded cascode configurations. b) [8+7]
- 5.a) The β and the open loop gain of an amplifier are -10% and -80 respectively. By how much % the closed loop gain changes if the open loop gain increases by 25%?
 - b) Compare the characteristics of feedback amplifiers in all the four configurations.
 - Reason out why 2 stages are required to implement current shunt feedback. c) [5+6+4]
- 6. Starting from the description of a generalized oscillator, derive the expression for frequency of oscillation in a colpitts oscillator. [15]

- 7.a) With the help of a suitable circuit diagram, show that the maximum conversion efficiency of a class B power amplifier is 78.5%.
 - b) Explain how Total harmonic distortion can be reduced in a Class B push-pull configured amplifier. [7+8]
- 8.a) Derive an expression for the bandwidth of a synchronous tuned circuit.
- b) Discuss the necessity of stabilization circuits in tuned amplifiers. [8+7]

FIRST

CODE NO: R09220402

II B.TECH - II SEMESTER EXAMINATIONS, APRIL/MAY, 2011 ELECTRONIC CIRCUIT ANALYSIS (Common to Electronics & Communication Systems, Electronics & Computer Engineering, Electronics & Instrumentation Engineering, Electronics & Telematics, Instrumentation & Control Engineering)

Time: 3hours

Max. Marks: 75

Answer any FIVE questions All Questions Carry Equal Marks

- 1.a) Draw the circuit diagram of a common collector amplifier along with its equivalent circuit. Derive expressions for A_V and R_I.
 - b) What is meant by small signal for analyzing a BJT based amplifier?
 - c) What is non-linear distortion? List the causes for this type of distortion in amplifiers.

[7+4+4]

- 2.a) Discuss various possibilities of inter-stage coupling of amplifiers.
 - b) For the two-stage RC coupled amplifier circuit shown, calculate the Individual stage voltage gains and the overall voltage gain. Input impedance of individual stages is given as 2.4 K Ω and β of individual transistors as 80. [6+9]

3.a) A transistor has $f_{\alpha} = 8MHz$, and $\beta=80$.when connected as an amplifier, it has stray capacitance of 100pF at the output terminal. Calculate its upper 3dB frequency when R_{load} is

i) 10KΩ ii) 100KΩ.

- b) Discuss the effect of coupling capacitors of a CE amplifier on the overall frequency response of the amplifier. [8+7]
- 4.a) Discuss the effect of different type of loads to a common source MOS amplifier.
 - b) Differentiate between cascode and folded cascode configurations. [8+7]

- 5.a) An amplifier has a gain of 50 with negative feedback. For a specified output voltage, if the input required is 0.1V without feedback and 0.8V with feedback, Compute β and open loop gain.
 - b) Through the block schematics, show four types of negative feedback in amplifiers.
 - c) List the advantages of negative feedback in amplifiers. [5+5+5]
- 6.a) List out the merits \times demerits of oscillators.
 - b) With the help of suitable schematic and description, show that both positive and negative feedback are used in a Wien Bridge oscillator. Establish the condition for oscillations. [7+8]
- 7.a) State the merits of using push pull configuration? Describe the operation of class B push pull amplifier and show how even harmonics are eliminated.
 - b) A single ended class A amplifier has a transformer coupled load of 8 Ω . If the transformer turns ration is 10, find the maximum power output delivered to the load. Take the zero signal collector current of 500mA. [7+8]
- 8.a) Derive the expressions for Bandwidth and Q-factor of single tuned, capacitively coupled amplifiers. List the assumptions made for the derivation.
 - b) What is stagger tuning? Suggest possible applications.

-IRC

[9+6]